Experiment VERI: Department of EEE
FPGA and Verilog Imperial College London

Department of Electrical & Electronic Engineering

Imperial College London
2" Year Laboratory

Experiment VERI: FPGA Design with Verilog (Part 1)

(webpage: www.ee.ic.ac.uk/pcheung/teaching/E2 Experiment /)

Objectives

By the end of this experiment, you should have learned:

e How to design digital circuits using Altera’s Quartus Prime Design software;

e How to design digital circuits targeting Altera’s Cyclone V FPGA using Terasic’s
DE1-SoC Board;

e How to design digital circuits in efficient, synthesizable Verilog HDL;

e How to evaluate your design in terms of resource utilization and clock speed;

e How to use the DE1-SoC FPGA board with its custom daughter board for analogue
I/O functions;

e Have designed something yourself for the Cyclone V FPGA.

Before you start

Before you come to the laboratory, you are expected to:

e Have understood the lectures on Verilog
e Be familiar with the basic architecture inside the FPGA
e Have read through this Laboratory instructions

W Frca

I systen VGA Out

Mic Line Line VGA
In In Out Video-In 24-bit DAC

JTAG Header

Audio Codec
Video Decoder
PS2
USB-Blaster II
aster 2x20 GPIO x2
Power DC Jack
. Altera 28-nm
; | Cyclone V FPGA
Power ON/OFF J with ARM Cortex-A9
64MB SDRAM
ADC
ADC Header
7-Segment Display
LED x10
IR-out
IR-in

Switch x10 Button x4

V4.3 - PYK Cheung, 7 Nov 2017 Partl1-1

Experiment VERI:
FPGA and Verilog

Department of EEE
Imperial College London

Both the experimental board and a PC would be made available to you during your allotted

period in the second year laboratory.

In addition, you may also borrow a DE1-SoC board

from Level 1 stores to use at home for one week. If no one else has booked the board, you

can renew the borrowing period on a week-by-week basis.

This instruction manual is divided into four parts, one for each week. Each part has its own

goals and learning outcomes.

Some students will find this experiment harder or easier than average, depending on your
prior experience with digital logic. Therefore the four Lab sessions contain the compulsory s
well as optional exercisers. If you fall behind this experiment during any week, it is wise to
find a bit of spare time to catch up outside the official laboratory sessions and restrict

yourself to the compulsory parts only.

PART I - Schematic to Verilog

1.0 Introduction

You should have done some background reading before attending the
laboratory session as suggested at the Lecture.

FPGAs is a type of programmable logic devices introduced by Xilinx in
1985. It is now the predominant technology for implementing digital
logic in low to moderate volume production. The basic structure of an
FPGA is shown below. It consists of three main types of resources: 1)
Logic Blocks (or Elements); 2) Routing Resources; 3) 1/O Pad. For more
information about FPGA, see Lecture 1 notes available on the E2 Digital
Electronics course webpage.

1.1 Quartus Prime Design Suite

Quartus provides a complete environment for you to implement your design on
an Altera FPGA. It supports all aspects of the design flow, which is typically

following the flow diagram shown here. The best way to learn Quartus
is to go through this experiment step-by-step. After you have learned
the basics, you can start to explore other aspects of the Quartus
system.

1.2 DE1-SoC Board

DE1-SoC Board is designed and made by Terasic. It is based around a
Cyclone V FPGA from Altera. Include on the DE1 board are various I/0O
devices such as 7-segment LED displays, LED, switches, VGA port,
RS232 port, SD card slot etc. A block diagram of the DE1 board is
shown below. Although the Cyclone V includes a dual-core ARM
processor, we will only be using the FPGA part of the FPGA for this
experiment.

1.4 Verilog Hardware Description Language

-
!

Requirements

Architecture
design

Test
environmen

HDL design
L CER design

)

v Y

Behavioral
simulation

Timing
Analysis

Bitstream

One of the key learning objective of the 2 year course in digital logic (E2.1) is for you to
learn the Verilog Hardware Description Language (HDL), which is commonly used to specify
FPGA and other types of chip designs. An excellent tutorial can be found on:

http://www.asic-world.com/verilog/veritut.html.
provided in Appendix A.

V4.3 - PYK Cheung, 7 Nov 2017

A Verilog Syntax Summary sheet

is

Partl1- 2

\-\:-

=

Rout
Char

/O P

Logic Bloc

Experiment VERI: Department of EEE

FPGA and Verilog Imperial College London
L 25MHz Clock Input
((Clock Generator x1)
Normal Type-B
x2
A 4 * ‘ v
PSI2 @Ab |
¢ > Micro
. x6 .Ww SD Card
SDRAM x16 64 MB ~ [OEREcEEN .
e iacaccocoos: CEmme 4%"{;"»%_ " ——
40 pin GPIO —
B e coooco:cs DR
40 pin GPIO ’ @
- Croign - -
VGA (8 bit)
5CSEMA5F31C6N USB Host

Video-In r]]]—* Nideo Normal Type- A‘
Mlc In L DDR3
-' x72 SDRAM x32 1 GB

FPGA
Line In HPS 12C 12C UARTEN . |
% (e
From HPS _Tswitch Control w
= 5 USB Mini-B

x1
D ——

Clock(Clock Generator) -X—4>

FPGA HPS 2x7 LTC Header
[H e ﬂ

Y YT
x4 [x10 [x42 |x10 x6 l’“ x1 x1 x1

»
| @ H'F’S HPS WARM
| HPS
User LED RsT User RST

2 g o o | Button
daaa

0

Push Button x4

RRRRRARARR | "HiLE

v

4
Slide Switch x10 v v v
HEBEE

7- Segment Display x6

vy
L |

 xme

CEI 4
CD “
CD

Block Diagram of the DE1-SoC Board

1.5 Using Quartus Prime software and DE1 at home

If your own laptop is sufficiently powerful (at least 4GB of RAM) and has plenty of free disk
space (at least 1GB of free disk space), you may want to install a copy of the Quartus design
software on your own computer. The latest version is Quartus version 16. You may also
borrow a DE1-SoC board from the EEE Stores with your ID card. The lending period is one
week at a time. You may renew your loan of the board if no one else is on the waiting list.
Of course, the DE1-SoC board and the appropriate software are available anytime during
working hours in the Level 1 Electronics Lab.

To install your own copy of Quartus, you should go to Altera’s website to register, then
download the free Quartus Prime Light Edition from: http://dl.altera.com/?edition=web.
Note that Quartus and the DE1 board only works with MS Windows or Linux. If you are a
Mac user, you would need to run a virtual machine (e.g. VirtualBox, Parallels or VMware),
load a version of Windows or Linux, and then run Quartus under that environment.

Plug the DE1 board to a USB port on your computer and turn it ON (red button). It will ask
you for a device driver, which can be found in the Quartus software directory ... \drivers.
See “DE1-SoC Getting Started Guide” from the experiment webpage.

V4.3 - PYK Cheung, 7 Nov 2017 Partl1- 3

Experiment VERI: Department of EEE
FPGA and Verilog Imperial College London

Experiment 1: Schematic capture using Quartus — 7-Segment Display

If you have come to the laboratory session prepared, Part | of experiment VERI should take
no more than ONE 3-hour session. It will lead you through the entire design of a 7-segment
decoder using schematic entry method. It will use four slide switches on the right (SW3 to
SWO0) on the DE1 board as input, and display the 4-bit binary number as a hexadecimal digit
on the right-most 7-segment display (HEXO0).

HEX0[0]

HEXD[1]

HEX0[2)

/ANO[S RYA,
HEXO[3]

Cyclqsng!?V P\ e Cyclone§V
(o]

HEXO[5)

HEX0[6]

Step 1: Creating a good directory structure

Before you start carrying out any design for this

VERI part_1 exl exl_top
exercise, it would be very helpful if you first create in — .2 | Otherfiles
your home directory a directory structure on the part_2 ol LA for ex1
h:\ drive for this experiment. Shown on the right is a part_3 © L myib
possible directory structure that you may choose to
create. Each folder is empty for now, but as you part_4

pin_assignment.txt

progress through the four Lab Sessions, you will be
creating each design in each of the folders.

Step 2: See what you are aiming for

& Programmer - Z:/Dropbox/_My Documents/DE2-SoC Experiment/Lab1/BinTo7Seg_Ve

Mode: JTAG

Check

Go to the Experiment webpage (see above) and download e (DE SocUSB 1)
. . “ - Enable real-time ISP to allow background programming when available
a copy of the solution for Exercise 1: “ex1sol.sof” to your = = = —
e evice Checksum Usercode Programv Ven lank- Examine Security In
H H Zonfigure Bit
home directory (or wherever that is). Now turn ON the - e [Se
DE1 boa rd- B Auto Deter O Select Device
Found devices with shared JTAG ID for device 2. Please select your device.
Step 3: Programme the FPGA » Add File 5CSEBAS
@) 5CSEMAS
Start up Quartus software on your computer. Click 5CSTFDSDS
. 5CSXFC5C6
command: Tools > Programmer. In the popup window, ... 5CSXFCED

click: Hardware Setup You should see something like
the diagram on the right. Then select: DE-SOC [USB-1].
This is to tell Quartus software that you are using the DE1-
SoC USB interface to program (or blast) the FPGA. Then click Auto Detect

OK

. . & Programmer - Z:/Dropbox/_My Documents/DE2-Sc
button on the left. A window will pop up and you need to select SCSEMADS (. i view Processng Took Window Hep

radio button to tell the system which type of Cyclone V FPGA chip you are 2 Hardware Setw__| DE-SoC [USB-1)

using (WhICh iS SCSEMAS), Enable real-time ISP to allow background programming when available

File

hecksum Usercode

You will now see two lines in the Programmer window as shown on the <none> SOCVHPS 00000000 <none>

<none:

right. Since we are only configuring (i.e. sending a bit-stream to) the FPGA 10w
part of the Cyclone V chip, we need to delete the SOCVHPS (stands for X Delete
System-on-Chip V High Performance System, which is the ARM processor) = "#swrie
from the programmer set up. (Change Fly

* Add Dewice

Next click the AddFile button. Navigate to the folder containing the -

00000000 <none>

Select and delete SOCVHPS

exlsol.sof file. Select this. Finally click the Start button.

V4.3 - PYK Cheung, 7 Nov 2017 Partl- 4

Experiment VERI: Department of EEE
FPGA and Verilog Imperial College London

The ex1sol.sof file contains the solution to Exercise 1 designed by me. It has the bit-stream
to configure (or programme) the FPGA part of Cyclone V. Once the bit-stream is successfully
sent to the FPGA chip, this design will take over the function of the chip. You should be able
to change the least significant four switches and see a hexadecimal number displayed on
rightmost 7-segment display.

You should leave the programmer utility running in the background for ease of sending
another design to the FPGA later. Return to Quartus software by clicking its window.

Step 4: Paper Design

The overall block diagram for the decoder is 0
shown below. The decoder outputs out[6..0] IN[3.0] —p| 75€8 OUt[G"Ol 5/i/1
drive the seven segments on the display. Note decoder al |2
that the LED segments are low active, meaning 3

that the LED will light up (ON) if the

corresponding digital signal is at OV. mmm mmm

0000 1000000 1000 0000000
0001 1111001 1001 0010000
With what you have learned in the first year, you 0010 0100100 1010 0001000
should be able to design the decoder in the form 0011 0110000 1011 0000011

of seven Boolean equations, and then use K-map
L . . 1100 1000110

to minimise the logic. In order to save time, only
. . 0101 0010010 1101 0100001

derive the Boolean equation for out[4] as a
0110 0000010 1110 0000110

Boolean function of in[3..0].
0111 1111000 i 1111 0001110
You also should not use K-map to perform any optimization. Quartus (and other modern
CAD design software) will perform logic minimization for you and will do a much better job,
taking into account the architecture of the FPGA chip.

The truth-table for the decoder is shown here:

0100 0011001

JOhWn L wiy -0
MmMMOoO™MmMOoO DWW

Step 5: Create the project “ex1”

e Create in your home directory the
folder ../part_1/ex1.

o Click file>New Project Wizard, complete the form.
Use ex1 as the project name and ex1_top as top-
design name.

e Select the FPGA device as Cyclone V 5CSEMA5F31C6.
Then click Finish.

Step 6: Specify the 7-segment decoder as schematic

e Download from the website the file: 3 O smm
My7Seg_incomplete.bdf.zip and wunzip in the pe—
folder ../part_1/ex1. This is a partially completed R geismbntni
schematic for the 7-segment decoder circuit with 4 © primives

€ others
circuit for out[4] missing. You are now ready to enter | o

T and12

the circuit to produce out[4] as gates using the - @ anc2 : : : : : j}

schematic editor. This is shown on the right and it | oo ™™ L

Name:

implements the equation: 1 =

’ outd = /in3*in0 + /in3*in2*/inl + /in2*/in1*in0 ‘

The Graphic Editor provides a number of libraries which include circuit elements that can be
imported into a schematic. Double-click on the blank space in the Graphic Editor window, or

V4.3 - PYK Cheung, 7 Nov 2017 Partl- 5

in[3..0]

Experiment VERI:
FPGA and Verilog

click on the icon

Department of EEE

Imperial College London

D in the toolbar that looks like an AND gate. A pop-up box will appear.

Expand the hierarchy in the Libraries box as shown in the figure. First expand libraries, then
expand the library primitives, followed by expanding the library logic which comprises the
logic gates. Select “and2”, which is a two-input AND gate, and click OK. Now, the AND
symbol will appear in the Graphic Editor window. Using the mouse, move the symbol to a
desirable location and click to place it there.

e Repeat and place two “and3” and one “or3” gates on the schematic.

Change the

names of all the input and output nodes accordingly. (It is quickest to put down all
the gates first before wiring them up later.)

e Now wire up the gates by click and drag on the input nodes of the gates to extend a
wire out, and then simply type the name of the node on the keyboard.

e When completed, you will see the entire schematic diagram for the decoder circuit

as shown here:
:; ‘?‘ll_}ll & ~
e &= - LinN ﬁL‘ - nin[0]
-C:? inst3 [1]
N@T nin|
m[:?d
r‘z.g, nin[2]
> X
2 r‘[xL nin[3]
inst6
nin[3 AND
nin[2}——)
mnm—' inst
nin[3}— - - AND4
N2 — R oute)
in[1] » ./ 1~
in[0] inst7
inst1
. in[3] - AND4
in2] .
nin[1] Y—
Jnin[0]
inst2
2
" insti0 .
EEAHQL =
<) Y
inst11 i+ B
AHD__ r—'
i |nstl4
|nst1"
. IrANDA4
L .
“n |
OL:I
inst13

Step 7: Include this file in project

_outis)

nin[3] - - - A
B

’Lp]_ inst8
nin[3]
Tin2)

T

S ANDA OR3

out[4]

)
inst16

nin(1) —L__/
inst9
. ninf2]
. nin[1] l_NlL
inf0} !)
: " insti5

mn[3}_AHLJ4
in[2) »
nm[1k __,'
nin[O}——
Inst19
nin[2] - AND3
nin[1
in[0]

in[2] - - AND3
in[1
in[0]

) I
inst21
in[3] - AND4
ninf2-—
nf#4-—_/
mn[O}—

in[3] APID 3

in[2})
ninl0f - ins4
in[3] APIL

mst.s inst27.

mn[3}—A”U4
nin[2§—
in[1]—

nin[OF——

inst26

inst23 . .

— | OR4
inst20 L LI—* out[3)

|n[31_An

in[2]

nin[0f - |nst28
in[3] - AND3

in[tf— ‘

(0] ins2a LOR4

AND4

nin[3F——1)
—

inst32

in[2] =

nin[l);
in[0)—
inst30

AND3
m[‘_}‘j — Iri
" N[O inst31.

nn[3)—AN
in[2}—)
ninf4}
nln[winsi%

ninf3F—20
nin[2}
nin[1F—
in[0] —
inst34

in[3] - AND4

in[2] x—
nin[11—
in[O}—
inst35

) in[3] x—
nin[2}—

inst36

MW——CUFRUT out[6..0]

Every time you create a new entity or module as part of your design, you must include the
file in the project.

e Click: Project > Add Current Files to Project,

V4.3 - PYK Cheung, 7 Nov 2017

Partl1- 6

out[0]

Experiment VERI: Department of EEE
FPGA and Verilog Imperial College London

Step 7: Make a symbol for the decoder

It is often convenient to encapsulate a circuit into a module (sometimes known as an
“entity”), which is then used multiple times in a design. For us to do so, we need to create a
symbol for My7seg decoder module.

Click File > Creat/Update > Create Symbol ...

File Properties i »nté'ff-:,rv
o NET .

Create / Update » Create HDL Design File from Current File i

Export Create Symbol Files for Current File

Convert Programming Files Create AHDL Include Files for Current File

Step 8: Use this module at the top-level design schematic

e Now we will use the newly created entity My7seg in the top-level design.
e C(Click File>New ... and select Block Diagram /Schematic File as shown here:

Use the L button to select and place the My7seg module, input port and
output port on the schematic.

e Double click the port symbol...@T to edit the input and output pin names as
SW([3..0] and HEXO0[6..0] respectively.

e Use the bus wiring tool '-'I' to wire up the ports to the module as two busses as
shown below.
e Save thisfile.

O od 9
r ex1_top.bdf* [} V Compilation Report - ex1_top
e B6 L0000

My7seq

T SWI3..0] F——%ﬁ:—‘— in[3..0] out[6..0] t——— U TRUT > HEXD[6..0]

inst

Step 9: Pin assignment & Compilation

You need to associate your design with the physical pins of the Cyclone V FPGA on the DE1-
SOC board.

e Check that the device is corrected assigned as [signalName | Pin Location

5CSEMASF31C6 using: Assignments > Device ... HEXO0[6] PIN_AH28

e Click: Processing > Start > Start Analysis and Elaboration. HEXO[5] PIN_AG28
This will work out the input/output port names for your HEXO[4] PIN_AF28
design. This should complete without error. Otherwise, HEXO[3] PIN_AG27

fix all errors and re-analyse. (There will be many warnings HEXO[2] PIN_AE28

— generally warnings are not important. But there MUST HEXO[1] PIN_AE27
not be errors, which will be shown in RED.) HEXO[O] PIN_AE26

. SW[3] PIN_AF10

e Click Assignment > Pin Planner and a new window with SW2] PIN_AF9
the chip package diagram. You should also see the top- SWI1] PIN_AC12
level input/output ports shown as a list. SW[0] PIN_AB12

V4.3 - PYK Cheung, 7 Nov 2017 Partl1- 7

Experiment VERI:
FPGA and Verilog

Department of EEE
Imperial College London

& Pin Planner - Z:/Dropbox/_My Documents/EE2 Digital - New Experiment/VERI/part_1/ex1/ex1 - ex1_top - B
File Edit View Processing Tools Window Help earch altera con ®
— Report (e x Node Properties e x
". Report not available . _ Node name: HEXO0[4)
N Top View - Wire Bond o PIN_AF28 -
Cyclone V - 5CSEMA5F31C6 10 Standard. [33V LVTTL =
Q 3!4'1‘5 |on'1;§|920-2-r'2223‘42 2e 72820 % Reserved ::gx :g}:: 8?::“ ()
P 25V
w opees: 125V (defaut)
IR Name 3.0-VLVCMOS
Ca 30-VLVTTL
O bank |30y pC
VREF grou3.0.V PCI-X
o Edge 3.3.V LVCMOS
- General hd
M 4 Special function
[E DIFFIO_TX_R12n
== DIFFOUT_R12n
T, TOLDS Report T [as DQ2R
a3l P = DQ/DQS function X8_DQ2R
Tasks 98 x PadID 235
“ 4 I~ Early Pin Planning A Pad group 5
= W Early Pin Planning tbn\(\Ac.A.
= P Runl/O Assignmen A@ AL)
== W Export Pin Assignme bt
:P. W Pin Finder }/%% 8 @\é Q@A” J‘i‘:e.:‘v“‘
4 I~ Highhght Pins %
= E1/0 Banks woe 8 8&»@38@ D000 @90 i
® B VREF Groups § %@ OO0, 8@@0\) % n\g‘r
® & Edges *_O0 ():Xi) o9, O0/DO O Ax
1234 78 9101 121314151617 181920‘!2223‘42‘x27232930
68 4 7= Clock Pins = ama]
#8 Clock v
< >
:0 ; Named: * v «» Edit HEX0[4] Filter. Pins: all -
. [} Node Name Direction Location /0 Bank VREF Groug ‘itter Locatio /O Standard Reserved urrent Streng Slew Rate ifferential Pa Analog
‘= HEXO0[6] Output PIN AH28 5A B5A NO PIN AH28 33- VTTL 16mA _._ault) 1 (default)
» HEXO0[S5] Output PIN AG28 5A B5A NO PIN AG28 33- . VTTL 16mA _._ault) 1 (default)
s Output PIN AF28 5A B5A NO PIN AF28 33- VTTL 16mA . ault) 1 (default)
Output PIN AG27 5A B5A NO PIN AG27 33- VTTL 16mA . _ault) 1 (default)
Output PIN AE28 5A B5A NO PIN AE28 33-. VTTL 16mA . ault) 1 (default)
Output PIN AE27 5A B5A NO PIN AE27 33- . VTTL 16mA . ault) 1 (default)
Nudradt PIN AF2R A REA NN PIN AF2R 2L UTTI 1AmA aulth 1 (dofauit)

e Click on the appropriate pins one by one, and select the corresponding location from
a dropdown list according to the list shown in the pin assignment table above. The
I/0 standard (i.e. interface voltages) should be “3.3V LVTTL".

e Click: Processing > Start Compilation, to build the entire design, and to generate all
the necessary files. There should be NO error, but there will be many warnings.

Step 10: Program the FPGA on the DE1 Board

e You have now created in the ../part_1/ex1/output_files/ folder the file ex1_top.sof,
which contain your design. (This should be the same design as the one | gave you to

try out in Step 2 of this exercise.)

e Program the DE1 board with your version of ex1_top.sof and test that it is working

properly.

Step 11: Propagation Delay from inputs to outputs

e Click: Tools > TimeQuest Timing Analyzer to invoke the built in timing analyzer of

Quartus.

A new TimeQuest window will appear.

e Click: Netlist > Create Timing Netlist. Then select post-fit and slow-corner, then OK.
e Inthe “Set Operating Conditions” window, select “Slow 1100mV 0°C model”.

e Now click: Netlist > Update Timing Netlist ...

This will use the specified timing

model and condition to produce a set of timing data.

e Click: Report > Datasheet > Report Datasheet. This will produce a table showing the
input-to-output propagation delay for various combination of rise and fall times (RR,
RF, FR and FF). Make sure that you understanding what this table means.

V4.3 - PYK Cheung, 7 Nov 2017

Part1- 8

Experiment VERI:
FPGA and Verilog

Repeat the procedcure again but for “Slow 1100mV
85°C Model”. What is the delay difference at these

two temperature extremes? Why?

Step 12: Examine the resources used

Now examine the Compilation Report.
see something as shown here.

It shows that this design used only 4 out of 32,070
ALMs (Adaptive Logic Modules), 11 of the 457 1/0 pins

and none of the other resources.

You should

Department of EEE
Imperial College London

Flow svwmary |
Flow Status Successful - Sun Oct 09 15:29:33 2016

Quartus Prime Version 16.0.0 Build 211 04/27/2016 SJ Lite Edition
Rewvision Name ex1_top

Top-level Entity Name ex1_top

Family Cyclone V

Device S5CSEMASF31C6

Timing Models Final

Logic utilization (in ALMs) 4/32070(<1%)

Total registers 0

Total pins 11/457(2%)

Total virtual pins 0

Total block memory bits
Total DSP Blocks

Total HSSIRX PCSs

Total HSSI PMA RX Deserializers
Total HSSI TX PCSs

Total HSSI PMA TX Serializers
Total PLLs

Total DLLs

/4065280 (0 %)
187(0%)

I6(0%)

0
0
0
0
0
0
0
0/4(0%)

Congratulations! You have now completed your first FPGA design!

Experiment 2: 7-Segment decoder in Verilog HDL

| hope you now appreciate how limiting and slow it is to enter a design as a schematic
diagram. Modern digital designers DO NOT USE schematic as a method of entry any more.
Instead a designer would either use Verilog or VHDL hardware description language, or
some high level language such as OpenCL or Vivaldo HLS to specify the design. In this
experiment, you will design the Verilog version of what you have done in Experiment 1.
Hopefully this will convince you never to use schematic capture for digital design again!§

Step 1: hex_to_7seg.v

Step 2:

Create a new project ex2 as before and a top-
level module ex2_top as before in ex2 folder.
In Quartus, create a design file in Verilog HDL
known as hex_to_7seg.v using:
File > New ... and select Verilog HDL
from the list.
Type the Verilog source file as shown below.
(You should have seen this during one of the
Lectures earlier). Make sure you pay attention
to the syntax of Verilog. Save your file.
A full compilation can take a long time. A far
more efficient way to check the syntax of your
code by clicking: Process > Analyze current file.
You should get into a habit of ALWAYS perform
this step to make sure that the new Verilog
module you have created is as error free as

possible. It will save you a lot of time.

Create Top-Level Specification in Verilog

Instead of using schematic capture for the top-
level module (that connects to physical pins on
the FPGA), we will do this also in Verilog by
creating the file: “ex2_top.v” as shown here. Set
this as Top-Level entity.

Click: Project > Add/Remove Files, and remove
the .bdf file as part of this project.

V4.3 - PYK Cheung, 7 Nov 2017

module hex_to_7seg (out,in);
Tow-active out

output [6:0] out; /
4-bit binary inp

input [3:0] 1in;

reg [6:0] out; / make out a varia
always @ (*)
case (in)
4'h0: out = 7"'b1000000;
4'hl: out = 7'b1111001; --0 --
4'h2: out = 7'b0100100;
4'h3: out = 7'b0110000; // 5 1
4'h4: out = 7'b0011001; '/
4'h5: out = 7'b0010010; --6 --
4'h6: out = 7"'b0000010;
4'h7: out = 7'b1111000; 4 2
4"h8: out = 7 'b0000000; //
4"h9: out = 7 'b0011000; /S --3 --
4'ha: out = 7"'b0001000;
4'hb: out = 7"'b0000011;
4'hc: out = 7'b1000110;
4'hd: out = 7'b0100001;
4"he: out = 7'b0000110;
4'hf: out = 7'b0001110;
endcase
endmodule

// Module name: ex2_top

// Function: Top level module for this design
// 4-bit hex to one display only

// Creator: Peter Cheung

// version: 1.1

// Date: 9 Oct 2016

3&6du1e ex2_top (
SW, // input switches
HEXO

// Hex output on 7 segment display
’ input [3:0] sw; // declare input/output ports
output [6:0] HEXO;
hex_to_7seg SEGO (HEXO0, SW);
endmodule

Part1- 9

Experiment VERI: Department of EEE
FPGA and Verilog Imperial College London

This allows you to remove the .bdf file and replace it with the .v file for the top-level
specification.

Verify that everything works properly with: Process > Start > Start analysis &
elaboration. Make sure that there is no error. (Warnings often capture potential
errors. However, the Quartus system generates many warnings, and nearly all of
which are not important. Once you have gain confidence on the system, you may
start ignoring the warning, but never ignore any error.)

You will save a lot of time if you ALWAYS use these two steps: analyze, and analysis &
elaboration, and ensure that ALL errors are dealt with (and warning understood).

Step 3: Pin Assignment — the quick way

Earlier you used the pin assignment editor to associate pins on the package to your
signals. This is a tedious process. In ex1, if you have correctly completed the design,
the pin assignment would have been stored in a file: “ex1_top.qsf” file.
Open this file, either using Quartus’ built-in editor by clicking: File > Open file... or
use your own favourite edit on your PC.
You will find lines of statement such as:
set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to HEX0[4]
set_]ocation_assjgnment PIN_AF28 -to HEXO[ﬂ

The first line defines the voltage standard used by the HEX0[4] signal (3.3V logic).
The second line defines the physical pin location of HEXO[4] is PIN_AF28.

Now open the ex2_top.qsf file. You will see that there is no pin assignment for this
design yet. Before full compilation, we need to tell Quartus which signal is connect
to which physical pin on the FPGA.

Instead of using the tedious pin assignment editor in ex1, we will modify the
ex2_top.gsf file with our text editor to include the pin assighment information. To
do this, first download from the experiment webpage the file: pin_assignment.txt to
the VERI directory.

Then use: Edit > Insert File ... in Quartus to insert the whole of pin_assignment.txt
in ex2_top.gsf.

Note that we only use 7 pins in ex2_top.v, but pin_assignment.txt defines all pins
used by the four parts of Experiment VERI. Quartus will generate lots of warnings
which you may ignore about these unused pins not being driven. It will not create
any error and the pin assignments for unused pins will be ignored.

Step 5: Test your design

Recompile your design.

Go to the Programmer window (assuming that you still have it opened). Delete
the .sof file entry and add the current .sof file.

Test your design on the board.

Step 6: Put module in mylib

Over the four weeks in the Lab, you will design and verify various Verilog modules which
you will reuse. You should copy these to the “mylib” folder and include them in your
new design as necessary.

Note: When you perform a compilation, there may be a popup window informing you that
some “Chain_x.cdf” file has been modified, and ask if you wish to save it. Just click NO.

V4.3 - PYK Cheung, 7 Nov 2017 Part1-10

Experiment VERI: Department of EEE
FPGA and Verilog Imperial College London

Experiment 3: Test yourself - 10-bit binary switch values on three 7-segment
displays

Here is a “test yourself” exercise. Create your own design to display all 10-bit sliding
switches as hexadecimal on three of the 7-segment LED displays.

Checkpoint: You should get to this point by the end of the 3-hour Lab Session or earlier.

Experiment 4 (optional): Displaying 10-bit binary as BCD digits on the 7-segment
displays

In one of the lectures, you have been taught how to convert binary numbers to binary-code-
decimal digits using the “shift and add 3” algorithm. You have been shown how to
implement an 8-bit binary to BCD converter using Verilog. Furthermore in problem sheet 1,
you have been asked to extend this to a 10-bit converter (bin2bcd_10.v).

For this optional exercise, you are required to display the 10-bit binary number as specified
by the 10 sliding switches SW[9:0] as a decimal number using your 10-bit converter module
and the 7-segment decoder. Record the resource usage of your design.

e Now download from the experiment website a 16-bit binary to BCD converter
module provided (bin2bcd_16.v), and replace your 10-bit converter with this one.

e When instantiating the 16-bit converter, but only using 10 of the 16 bits, you should
specify the input ports as: {6’b0, SW[9:0]}. (Remember that the {...} operator is for
bit-concatenation.)

e Test your design on the DE1 Board.

e Compare the resource usage by this design (with bin2bcd_16.v) with that using the
10-bit version (bin2bcd_10.v). You will find that in fact the number of ALMs used
will be the same.

e Basically Quartus optimizer removes unused resources. The module bin2bcd_16.v
has six of its input connected to 0, and only 12 of its output connected to output
pins. The CAD software will eliminate all the redundant logic. This should result in
the same number of ALM being used as that with a 10-bit converter. In other words,
for such combinational circuit, you only need to keep the 16-bit version for any
numbers with 16 bits or lower.

Before you move onto Part Il of VERI, you should copy the components
(modules) you have designed to the “mylib” folder. In the following
sessions, you will be using the various .v files from this repository of
your own design. You will also be adding to it later.

V4.3 - PYK Cheung, 7 Nov 2017 Part1-11

QUALIS

Verilog HDL QUICK
REFERENCE CARD

Revision 2.1
() Grouping [1 Optional
{ Repeated | Alternative
bold Asis CAPS User Identifier
MobuLE

module MODID[({PORTID })I;
[input | output | inout [range] {PORTID,};]
[{declaration}]
[{parallel_statement}]
[specify_block]
endmodule

range = [constexpr : constexpr]

DECLARATIONS

parameter {PARID = constexpr,};
wire | wand | wor [range] {WIRID,};
reg [range] {REGID [rangel],};
integer {INTID [range],};

time {TIMID [rangel.};

real {REALID,};

realtime {REALTIMID,};

event {EVTID,};

task TASKID;
[{input | output | inout [range] {ARGID,};}]
[{declaration}]

begin
[{sequential_statement}]

end

endtask

function [range] FCTID;
{input [range] {ARGID,};}
[{declaration}]

begin
[{sequential_statement}]

end

endfunction

3. PARALLEL STATEMENTS
assign [(strength1, strength0)] WIRID = expr;
initial sequential_statement
always sequential_statement

MODID [#({expr,})] INSTID
([{expr,} | {PORTID(expr),});

GATEID [(strength1, strength0)] [#delay]
[INSTID] ({expr.});

defparam {HIERID = constexpr.};
strength ::= supply | strong | pull | weak | highz
delay ::= number | PARID | (expr [, expr [, expr]])

4. GATE PRIMITIVES
and (out, iny, ..., iny); nand (out, iny, ..., iny);
or (out, iny, .., iny); nor (out, iny, .., iny);
xor (out, iny, ..., inN); Xnor (out, iny, ., iNy);
buf (outy, ..., outy in); not (outy, ..., outy in);
bufif0 (out, in, ctl); bufif1 (out, in, ctl);
notif0 (out, in, ctl); notif1 (out, in, ctl);
pullup (out); pulldown (out);
[rlpmos (out, in, ctl);
[rinmos (out, in, ctl);
[rlcmos (out, in, nctl, pctl);

[rltran (inout, inout);
[rltranif1 (inout, inout, ctl);
[rltranif0 (inout, inout, ctl);

5. SEQUENTIAL STATEMENTS
begin[: BLKID
[{declaration}]]

[{sequential_statement}]
end

if (expr) sequential_statement
[else sequential_statement]

case | casex | casez (expr)
[{{expr,}: sequential_statement}]
[default: sequential_statement]
endcase

forever sequential_statement
repeat (expr) sequential_statement
while (expr) sequential_statement

for (Ivalue = expr; expr; Ivalue = expr)
sequential_statement

#(number | (expr)) sequential_statement

@ (event [{or evenf}]) sequential_statement
Ivalue [<]= [#{number | (expr))] expr;

Ivalue [<]= [@ (event [{or event}])] expr;

wait (expr) sequential_statement
> EVENTID;

fork[: BLKID
[{declaration}]]
[{sequential_statement}]

join

TASKID[({expr,})I;

disable BLKID | TASKID;

assign Ivalue = expr;

deassign Ivalue;

Ivalue =
ID[range] | ID[expr] | {{lvalue,}}
event ;= [posedge | negedge] expr

SpPeCIFY BLoCK

specify_block = specify
{specify_statement}

endspecify

6.1. SPECIFY BLOCK STATEMENTS

specparam {ID = constexpr,};

(terminal => terminal) = path_delay;

((terminal,} *> {terminal,}) = _delay;

if (expr) (terminal [+|-]=> terminal) = path_delay;

if (expr) ({terminal,} [+|-]*> {terminal,}) =
path_delay;
[if (expr)] ([posedge|negedge] terminal =>
(terminal [+|-]: expr)) = path_delay;

[if (expr)] ([posedge|negedge] terminal *>
({terminal,} [+]-]: expr)) = path_delay;

$setup(tevent, tevent, expr [, ID]);
$hold(tevent, tevent, expr [, ID]);
$setuphold(tevent, tevent, expr, expr [, ID]);
$period(tevent, expr [, ID]);
$width(tevent, expr, constexpr [, ID]);
$skew(tevent, tevent, expr [, ID]);
$recovery(tevent, tevent, expr [, ID]);
tevent ;= [posedge | negedge] terminal
[&&& scalar_expr]

path_delay ::=

expr | (expr, expr [, expr [, expr, expr, expr]])
terminal == ID[range] | ID[expr]

© 1995-1998 Qualis Design Corporation. Permission to

reproduce and distribute strictly verbatim copies of this
document in whole is hereby granted.

See reverse side for additional information.

7. EXPRESSIONS
primary
unop primary
expr binop expr
expr ? expr : expr
primary ;=
literal | Ivalue | FCTID({expr,}) | (expr)
7.1. UNARY OPERATORS

* - Positive, Negative
! Logical negation
~ Bitwise negation
& ~& Bitwise and, nand
I, ~1 Bitwise or, nor

A A AL Bitwise xor, xnor

7.2. BINARY OPERATORS
Increasing precedence:
?: iflelse

1l Logical or

&& Logical and

| Bitwise or

A A~ Bitwise xor, xnor

& Bitwise and

== l= === I== Equality

<, <=, > >= Inequality

<< >> Logical shift

+ - Addition, Subtraction

* % Multiply, Divide, Modulo
7.3. SIZES OF EXPRESSIONS

unsized constant 32

sized constant as specified

iopj +-* 0% & 0~ max(L(i), L())

opi +, -~ L)

m g— ===, _HH. ==, I=

&&, ||, =, ==, <, == 1
& ~& |, ~,* ~ 1

»> << L(i)
max(L(), L(k))
L(i) + ..+ L(j)

1" (LO)+...*L(K)
L()

8. SysTEM TASKS

* indicates tasks not part of the IEEE standard
but mentioned in the informative appendix.

8.1. InpPuT

$readmemb(“fname”, ID [, startadd [, stopadd]));
$readmemh(“fname”, ID [, startadd [, stopadd]]);
*$sreadmemb(ID, startadd, stopadd {, string}):
*$sreadmemh(ID, startadd, stopadd {, string});

© 1995-1998 Qualis Desian Corporation

8.2. OutpPuT

$display[defbase]([fmtstr,] {expr.});
$write[defbase] ([fmtstr,] {expr,});
$strobe[defbase] ([fmtstr,] {expr,});
$monitor[defbase] ([fmtstr,] {expr,});
$fdisplay[defbase] (fileno, [fmtstr,] {expr,});
$fwrite[defbase] (fileno, [fmtstr,] {expr.});
$fstrobe(fileno, [fmtstr,] {expr,});
$fmonitor(fileno, [fmtstr,] {expr,});

fileno = $fopen(“filename”);

$fclose(fileno);
defbase :=h|b|o

8.3. TIME
$time “now” as TIME
$stime “now” as INTEGER
$realtime “now” as REAL
$scale(hierid) Scale “foreign” time value
$printtimescale[(path)]

Display time unit & precision
$timeformat(unit#, prec#, “unit”, minwidth)

Set time %t display format
8.4. SIMULATION CONTROL
$stop Interrupt
$finish Terminate
*$save(“fn") Save current simulation

*$incsave(“fn") Delta-save since last save
*$restart(“fn”) Restart with saved simulation

*$input(*fn™) Read commands from file
*$log[(“fn™)] Enable output logging to file
*$nolog Disable output logging
*$key[(“fn™)] Enable input logging to file
*$nokey Disable input logging

*$scope(hiername) Set scope to hierarchy
*$showscopes Scopes at current scope
*$showscopes(1) All scopes at & below scope
*$showvars Info on all variables in scope
*$showvars(ID) Info on specified variable
*$countdrivers(net)>1 driver predicate

*$list{(ID)] List source of [named] block
$monitoron Enable $monitor task
$monitoroff Disable Smonitor task
$dumpon Enable val change dumping
$dumpoff Disable val change dumping

$dumpfile(“fn) Name of dump file
$dumplimit(size) Max size of dump file

$dumpflush Flush dump file buffer
$dumpvars(levels [{, MODID | VARID}])
Variables to dump
$dumpall Force a dump now
*$reset{(0)] Reset simulation to time 0
*$reset(1) Reset and run again
*$reset(0|1, expr) Reset with reset_value
*$reset_value Reset_value of last Sreset
*$reset_count # of times $reset was used

© 1995-1998 Qualis Desian Corporation

8.5. MISCELLANEOUS

$random[(ID)]

*$getpattern(mem) Assign mem content
$rtoi(expr) Convert real to integer
$itor(expr) Convert integer to real

$realtobits(expr) Convert real to 64-bit vector
$bitstoreal(expr) Convert 64-bit vector to real

8.6. ESCAPE SEQUENCES IN FORMAT STRINGS

\n, AL W\ newline, TAB, V',
Do character as octal value
%% character “%’

Y%fw.dle, %{w.d]JE display real in scientific form
Yo[w.d]f, Y[w.d]F display real in decimal form
%[w.d]g, %[w.d]G display real in shortest form

%[0]h, %[0]H display in hexadecimal
%[0]d, %[0]D display in decimal

%[0]o, %[0]O display in octal

%[0]b, %[0]B display in binary

%[0]c, %{0]C display as ASCII character
%[0]v, %[0]V display net signal strength
%[0]s, %{0]S display as string

%[0]t, %[0T display in current time format
%[0]m, %[0]M display hierarchical name

9. LexicaL ELEMENTS

hierarchical identifier -== {INSTID .} identifier

identifier = letter | _ { alphanumeric | $ | _}
escaped identifer == \{nonwhite}
decimal literal .=

[+|-]linteger [. integer] [E|e[+]-] integer]
based literal .= integer * base {hexdigit | x | z}
base ;= blo|d|h
comment == /I comment newline

comment block ::= /* comment */

© 1995-1998 Qualis Design Corporation. Permission to

reproduce and distribute strictly verbatim copies of this
document in whole is hereby granted.

Qualis Design Corporation

Elite Consulting and Training in High-Level Design

Phone: +1-503-670-7200 FAX: +1-503-670-0809
E-mail: info@qualis.com com
Weh: hitp:/iwww _qualis_.com

Also available: VHDL Quick Reference Card
1164 Packages Quick Reference Card

Department of EEE
Imperial College London

Department of Electrical & Electronic Engineering
Imperial College London

2" Year Laboratory

Experiment VERI: FPGA Design with Verilog (Part 2)
(webpage: www.ee.ic.ac.uk/pcheung/teaching/E2 Experiment /)

PART 2 — Counters and FSMs ‘

1.0 Learning Outcomes

Part 2 of VERI teaches you:

1.1

how to design different types of counters and timers;

how to use the Modelsim simulator to verify the correct function of your design and
the use of testbenches;

how to predict the maximum operating clock frequency of your circuit sequential
circuits;

how to design some useful timing and counting components for later part of
Experiment VERI.

Experiment 5: Designing a Counter

Step 1: Create the project for an 8-bit counter

Create in your directory a folder named part_2.

Click file>New Project Wizard, and create project ex5 and top level file ex5_top.
Then click Finish.

Create the Verilog file: “counter_8.v” which contains your design in Verilog. |
suggest you use convention of using “_n" to indicate the number of bits in a module.
Click File > New ... and select Verilog as the new file. An edit window will appear.

Step 2: Enter the Verilog specification of the 8-bit binary counter

Enter the Verilog module as shown below (next page). Although you can miss out
the comments, | recommend that you to retain them because the code is
deliberately verbose in order to explain the meaning of the Verilog language.

The line ‘timescale 1ns / 100ps tells the system to use 1 ns as the unit time step
with a time resolution of 100ps.

Make sure that you fully understand this Verilog code before proceeding to the next
step. Save the file as counter_8.v. (I recommend that you use module name as the
file name to avoid confusion.)

Step 3: Enter the Verilog specification of the 8-bit binary counter

While is opened in the Editor window, click Project > Add Current File to Project,
then click Project > Set as Top Level Entity. This command tells Quartus that this
module is the top-level of your design.

Normally we use .. top.v as the top-level module, which connects to
physical pins of the FPGA. However, for this experiment, the counter
module is verified through simulation. So we don’t need to create pin
connects. The “Set as Top Level Entity” is very useful if you want to use the
simulator to verify different modules in a large design. You can move up and
down the module hierarchy and verify them from the lowest level up.

v4.1 - PYK Cheung, 7 Nov 2017 Part2-1

Department of EEE
Imperial College London

e Click Processing > Analyze Current File. This is the fastest way to check if this .v file
has any syntax error.

e Then Click Processing > Start > Start Analysis and Synthesis. This takes the current
Verilog module (and all other modules that it uses if any), and produce a register-
level model of your design ready for register-transfer level (RTL) simulation. Unlike
full compilation, this step does not require pin assignment and other device specific
steps, but is sufficient for you to simulate the circuit as specified in Verilog.

‘t‘1mesca‘le 1ins 100ps // unit time is 1ns, resolution 100ps

Verilog code: 8-bit counter // Design Name: counter_8
(Note that the first character on line 1 before '/ Function : an 8-bit synchronous counter with enable input

‘timescale’ is a backquote " - not easy to find on many

keyboards!) clock, / clock input
enable, // high enable counting
) count // count value
Step 4: Simulate the binary counter /= Declare ports ---------

parameter BIT_SZ = 8;
input clock;

e Click Tools > Run Simulation Tools > input enable;
. . . output [BIT_SZ-1:0] count;
RTL Simulation. This command starts |
. . // count needs to be declared as reg
up Modelsim simulator programme as a reg [BIT_sz-1:0] count;
separate process. Now you have |//---- always initialise storage elements such as D-FF

. . “dinitial count = 0;
entered the Modelsim environment.

e C(Click Simulate > Start Simulation
always @ (posedge clock)
Then select work -> counter_8 from the if (enable == 1'b1)
. . X count <= count + 1'bl;
popup window. This tells Modelsim to

//---- Main body of the module --------

endmodule // end of module

simulate this module.

e Note that Modelsim provides several windowpanes. The most important is the
Transcript pane — this is where you enter commands’ to drive the simulator. The
wave pane is where results are displayed as waveforms. You are recommended to
un-dock this pane as shown below so that it is in a separate window and spans the
whole width of your monitor. Finally, there is the object pane, which shows all the
signals (objects) of your design.

—] & OV S i dn AW S |

M ModelSim ALTERA STARTER EDITI!

File Edit View Compile Simulate Add Transcript Tools Layout Bookmarks Window Help

R EY I M| %0% o) B 4| &8 RE|| % @ w | 5F[100 0o ELEIEE
| coumetayout pazcorums vl %-a-ga-q||[[FwmE || o &

&} sim - Default + &1 x| |} Transcript b +H Y x| | $a Objects
'hnstance IDesign unit [Desu /../modelsim.ini to modelsim.ini ;I
-4 counter_8 counter 8 Modi ||# Modifying modelsim.ini (00000008 ... Internal
& #INITIAL#24 counter_8 Prool | |# f* Warning: Copied (;:\«‘alFera\lS.l\mgde}sz:.m_ase 2 in
@ #ALWAYS=28 counter_8 Proo \win32aloem/../modelsim. 12}1 Fo.modelsun. ini. - n
) B Updated modelsim.ini.
| #vsim_capacity# Capz |4 XX ... Out

vlog -vlegOlcompat -work work +incdir+Y¥:/_My\
Documents/EE2\ Digital\ -\ New\ Experiment/VERI/
part_2/ex5 {Y:/_My Documents/EE2 Digital - New E
xperiment/VERI/part_2/ex5/counter_8.v}

Model Technology ModelSim ALTERA vlog 10.1d Co
mpiler 2012.11 Nov 2 2012

-- Compiling module counter_ 8

#

Top level modules:
2 counter_§

#

ModelSim> vaim work.counter_8

1 Modelsim uses a scripting language known as Tcl to control how it is driven. You only need to learn
Tcl if you want to do advance stuff with Modelsim for your personal interest.

v4.1 - PYK Cheung, 7 Nov 2017 Part2-2

Department of EEE
Imperial College London

Step 5: Add waveforms to the Wave window and drive

. force command is to drive a signal
signals

Logic 1 10ns later
° . . 7
In the transcript window, enter two commands: “add force clock ¢ 0, 1%0ns —repeat 20ns

wave clock enable” and “add wave —hexadecimal
count”. This will add these signals as waveforms in Logic 0 at Ons (from now) Repeat every 20ns

the wave pane and show count values as
hexadecimal.

e Now we want to drive clock with a 50MHz symmetrical signal. To do this, enter:

e Enter: “force enable 1” to enable the counter.

e Enter: “run 100ns” to run the simulator for 5 clock cycles (5 x 20ns = 100ns).

e You will see the waveform pane showing the counter counting from 0 to 5. Now
force enable low and run for another 100ns. Then high again and run for 100ns.

o
EXFCEC L FEES Qﬂ - W o NTBES | B DS
S« o€ - B | Seard Y. <’ ?5 tiialt

Cursor 1 218.7ns ﬂ

e Click on the waveform put a cursor at a specific time for inspecting the signal values.
The icons above the waveforms (as labeled) allow you to zoom in and out of the
waveform. Try this yourself.

v4.1 - PYK Cheung, 7 Nov 2017 Part2-3

Department of EEE
Imperial College London

Step 6: Create a Testbench as a DO-file

e Interactively specifying .
n#

the driving (1] m?wmllpart_zlexslsimlaﬁon/modelsin/ﬂ:_omnter.do :

Default =
e

signals is very tedious and prone to

error. Therefore the preferred method E 2dd wave clock enable)
is to create a “do” file which is a text file ; :::C:a?o;ie;agecimiénzofzzpeat 20ns
containing a sequence of commands (as 4 force enable 1 ’
you have previously entered in the 5 run 100ns
transcript window). 6 force enable 0
e Click File > new > source and select ; ;z:ciO::ble .
new “do” file. Then enter the command 9 run 100'035
lines as shown on the right. Then save 14

this as “tb_counter.do”.
e Delete all signals from the wave window, and enter command
vsim> restart
vsim > do ./tb_counter.do

e This should provide exactly the same waveform results as in step 5. However,
the .do file can be reused and modified far easier than typing them into the
transcript window. It acts as a simple form of a test-harness (or testbench) for your
design. Generally speaking, you must produce testbenches for all your designs
instead of using interactive means to test your circuit. Not only because this saves
time, it also allows you to change the code and verify its correctness in the same
way for each version of your design.

Step 7: Single stepping

e Modelsim is very powerful. You can use it to debug your Verilog design almost like
software. However, do remember that we are dealing with a hardware description
that operates in parallel. In contrast, software codes are generally procedural and

operate sequentially.

. . P I - WS
e Try the vsim> step command or click on the step-command pane * FriaAL

to watch how you can step through your Verilog code. Signal values in the object
and the wave windows are updated accordingly.

e Modelsim has many useful features to help you debug your design. Details of all the
commands can be found in the Modelsim Reference Manual. This is easily available
under Help > PDF Documentations > Reference Manual. Beware that this manual
is very thick! DO NOT print this out.

2.0 Experiment 6: Implementing a 16-bit counter on DE1

In this part of the experiment, you will test your counter design on the DE1 board. You will
also learn how to find the maximum clock frequency that your design will work correctly.

Step 1: Create a new project ex6, and copy to this directly your files counter_8.v. Modify
counter_8.v to counter_16.v and make it a 16-bit counter. Furthermore, add a reset input
to reset the count value to zero synchronously to the clock. Download from the experiment
webpage the component bin2bcd_16.v, a module | have designed to convert a 16-bit binary
number to 5 BCD digits. You will also need the add3_ge5.v module. Put these module in
the ../mylib folder, which should also contained the hex_to_7seg.v you designed in Part 1.

Step 2: Create a top-level module ex6_top.v in Verilog to specify the circuit shown below.
Make sure that you have added all the relevant Verilog modules to the project using Project

v4.1 - PYK Cheung, 7 Nov 2017 Part2-4

Department of EEE
Imperial College London

> Add/Remove Files in Project: counter_16.v, ex6_top.v and finally add hex_to_7seg.v,
add3_ge5.v and bin2bcd_16.v from your library folder ../mylib/. Go to the ex6_top.v
window and set this file as your top-level module.

counter_16 bin2bcd_16
7
KEY[1] BCDO /2 hex_to_7seg + HEXO
=) 7
= reset 5 16 BCD1 £ hex_to_7seg # HEX1
‘ _I_—C enable 7 B BCD2 =4 hex_to_7seg + HEX2
< KEY[0] 5 | N
S BCD3 [~ hex_to_7seg | HEX3
7
CLOCK_50 > clock BCD4 {—% W HEXA

Push button keys are low active, i.e. KEY[0] and KEY[1] are normally high and go low when pressed.

Step 3: Use Processing > Analyze Current File check your newly create Verilog files. This is
the quickest way to find the basic syntax errors in your Verilog code. Once all the simple
errors are fixed, use Processing > Start Analysis and Elaboration to perform fuller check of
the “ex6_top.v” to make sure that files are consistent and correct. There is no need to
simulate this circuit.

Step 4: Selecting the FPGA Device — Click Assignments > Device.... and select the correct
Cyclone V FPGA: 5CSEMA5F31C6.

Step 5: Pin Assignment — Open the ex6_top.gsf file. Examine its content. You will find that
no pins are being assigned yet. Insert into this file all the pin assignments. The easiest way
to do this is click on: Edit > Insert file .. then select ../pin_assignment.txt (you should have
downloaded this file from the Experiment webpage). Note that you are currently not using
all the pins assigned in the pin_assignment.txt file. Don’t worry. This will only produce a
few more warning messages. Full compilation can still go ahead without errors.

2 . .
"< which should contain one

Step 6: Set clock frequency — Create a new file “ex6_top.sdc
single line:

create_clock -name "CLOCK_50" -period 20.000ns [get_ports {CLOCK_50}]

. {9 Compilation Report - ex6_top [EJ - ex6_top.v
With this, Quartus will know that the signal CLOCK_50is a 50 [, R —
MHz clock. 3 Fitter
Assembler
Step 7: Full Compilation — Click: Processing > Start ‘ %Emma;”
Compilation. This will go through the entire compilation B SDC File List
process. Examine the Tasks window on the left and see all the E Clocks

4 Slow 1100mV 85C Model

steps being taken in order to generate the final bit-stream. B Fmax Summary

=| Timing Closure Recommendations

Step 8: Maximum clock frequency — As part of the EER Setup Summary
compilation process, TimeQuest timing analyzer is used to %::fj:;”’;ﬁmm
predict various timing information. In the “Compilation

Report” window, you should see a list of reports resulting

=| Removal Summary

B Minimum Pulse Width Summary

Table of Contents

. e = M Summary
from the compilation. Double-click TimeQuest Timing poom
Analyzer entry, and you should see a list similar to the one ClockName Type Period Frequency Rise Fal
1 CLOCK_S0 Base 20.000 50.0 MHz 0.000 10.000

2 Synopsis Delay Constraint (.sdc) files are standard formatted files introduced by Synopsis, a well-
known company specializing on IC design CAD tools. With this, a designer can specify various timing
constraints for the CAD tools the check against. Here we are only using this to define clock frequency.

v4.1 - PYK Cheung, 7 Nov 2017 Part2-5

Department of EEE
Imperial College London

shown here. Clicking on various entries under this will show the various timing
specifications. Answer the following questions:

What are the predicted maximum frequencies for this circuit under the highest and lowest
temperatures? What are the other interesting timing data that you can discover with these
reports? Why is the TimeQuest entry red, indicating that there may be a problem?

Step 9: Test your design on DE1 — program the DE1 and check that your design works.

Step 10: Examine the amount of FPGA resources being used by this 16-bit counter. Explain
the results.

Test-yourself Task (compulsory) — Cascade counter

You are now required to create something yourself. In the previous exercise, the 16-bit
counter is counting a 20MHz clock. This is much too fast for us to see the counter changing.
This part of the experiment requires you use the counter to count the number of
millisecond elapsed. You would need to do this by having two counters cascaded (i.e.
connected in series) with each other. The overall block diagram is shown below.

The divide-by-50000 circuit generates a 1 cycle high pulse every 50,000 clock cycles.
Therefore the output signal tick provides one enable pulse every millisecond. (See notes.)

KEV[L] | counter_16 bin2bcd_16
7
KEY[O] | —(reset BCDO [~7% hex_to_7seg [’ HEXO
—O & [—enable) 4 7 Hex
N K r— N]}6 BCD1 74 hex_to_7seg 7
tic = .
=] | 7/ B BCD2 /2 hex_to_7seg + HEX2
3 7
3 8 BCD3 [~7% hex_to_7seg # HEX3
o
BCD4 (74— hex_to_7seg [HEX4
CLOCK_50 | > clock 4

Modify your circuit to implement this and test the new circuit on the DE1 board.

3.0 Experiment 7: Linear Feedback Shift Register (LFSR) and PRBS

You encountered a 4-bit LFSR in Lecture 5 slide 17, which implements the primitive
polynomial: 1 + X3 + X4. You are now required to implement a 7-bit LFSR implementing
the polynomial: 1+ X+ X7. Assuming that you initialize the shift register to 7'd1, work out

manually the first 10 sequence values of the output sequence. (The output sequence should
be 127 long without repetition, is known as a pseudo-random binary sequence or PRBS.)

Connect the shift register clock to KEY[3] and use the momentary key to cycle through the
first ten values of the PRBS. The random output should be displayed as two hexadecimal
digits.

Checkpoint: You should get to this point by the end of the second week.

v4.1 - PYK Cheung, 7 Nov 2017 Part2-6

4.0 Experiment 8 (Optional challenge): Starting line delay circuit

Department of EEE

Imperial College London

The next two experiments are optional. They are designed to provide a challenge to those
who finish early, or for those who want to learn more about digital design, Verilog and
FPGAs. The two experiments are linked — what you designed in Experiment 8 will be used in

Experiment 9.

The goal here is to design a Formula 1 style of race starting lights. The specification of your

circuit is:

1. Thecircuit is triggered (or started) by pressing KEY[3] (don’t forget KEY[3] is low

active);

2. The 10 LEDs (below the 7-segment displays) will then start lighting up from left to
right at 0.5 second interval, until all LEDs are ON;
3. The circuit then waits for a random period of time between 0.25 and 16 seconds
before all LEDs turn OFF;
4, You should also display the random delay period in milliseconds on five 7-segment

displays.

In order to assist you in designing this circuit without spending too much time, the following
overall block diagram of the circuit is provided. You should also download the solution bit-
stream for this experiment from the experiment webpage (ex8sol.sof) and try it out before

attempt it yourself.

> clk

tick

CLOCK_50 tick ms
+50000 =
|_—‘| tick_hs
en
KEYI[3]
ov |

CYCLONE V FPGA

en_Ifsr

fsm

trigger

time_out

start_delay

ledr

In the above diagram, all signals on the left of the block are inputs and the signals on the

right are outputs.

The two clock divider circuits provide clock ticks once every 1ms and 0.5sec respectively.
Each clock tick should be a positive pulse lasting one period of CLOCK_50 (i.e. 20ns). The

system then use the tick_ms signal as the clock of the remaining circuit.

The LFSR module produces a pseudo-random binary sequence (PRBS), which is used to
determine the random delay required. The enable signal to the LFSR allows this to cycle

through a number of clock cycles before it is stopped at a random value.

The delay module is triggered after all 10 LEDs are lid, and then provides a delay of N clock

cycles (at 1ms period) before asserting the time_out signal (for 1ms).

The delay value N is fed to the binary to BCD converter, which then drives the 7-segment

displays.

v4.1 - PYK Cheung, 7 Nov 2017

Part2-7

-1:]
el [0
Q K —
p> clk prbs 2 || 7 |HExolHexal 5/ /1
en Ifsr ‘E o-l 4/7/,‘ 2
5 3 s
Ly
Pclk delay
trigger time_out
LEDRI9:0]
N
ov

Department of EEE
Imperial College London

There are several design decisions to be made:

1. How many bits LFSR is required?
2. How many bits should you use in the delay module?

The FSM module is the key module to the entire system. You must decide what are the
states that are required, draw the state diagram and then map that to Verilog.

5.0 Experiment 9 (Optional challenge): A Reaction Meter

Extend your circuit in Experiment 8 by adding a reaction counter. This should count the time
between all the LEDs turning OFF and you pressing KEY[0]. The reaction time, instead of
the random delay, should be displayed on the 7-segment displays in milliseconds.

v4.1 - PYK Cheung, 7 Nov 2017 Part2-8

Department of EEE
Imperial College London

Department of Electrical & Electronic Engineering

Imperial College London

2" Year Laboratory

Experiment VERI: FPGA Design with Verilog (Part 3)

PART 3 — Analogue 1/0 and SPI serial Interface ‘

1.0 The Add-on Card

This part of the experiment introduces you to the add-on card to the DE1 board. The add-on
card consists of a 10-bit ADC and a 10-bit DAC, a quad op-amp, sockets for earphone
(analogue output) and sound source (analogue input), and a potentiometer. The overall
block diagram of the add-on card is shown below. It should be plugged into the expansion
socket furthest away from the edge of the DE1 board. Beware of the alignment between
the plug and the socket. If the add-on board is inserted correctly, the green LED will light up
when the DE1 board is turned ON.

You do not need to understand all the circuitry on this board in details. Nevertheless, the
schematic diagram and a detail explanation on how this board works, together with all the
datasheets of the components used, are provided on the Experiment webpage.

For this part of the experiment, you would need to bring your personal earphone, and from
the Lab, get a 3.5mm lead and a digital voltmeter.

By the end of this part of the experiment, you will have:

e Understood and verified the operation of the Serial-to-Parallel Interface (SPI) of the
digital-to-analogue converter (DAC) MCP4911 using Modelsim;

e Tested the DAC and measured its output voltage range;

e Learned how to use a ROM (read-only memory) and a constant coefficient
multiplier;

e Use the analogue-to-digital converter (ADC) MCP3002 to convert dc voltages;

e (Finally), designed a sinewave tone generator with variable frequency which is
controlled with the slide switches, and the frequency value showed on the
7-segment displays in decimal format.

5 PWM_OUT (TP5 black) | LO\{VPaSS P8 (red)
Filter
DAC_CS
AD20 N
DAC_SDI _ L
AG18 > ! TP9 —
AK21 DAC_LD N MCP4911 " . To earphone
bAC sk | 10-bit DAC —1
AF20 = 5
(Cyclone"
FPGA = SoC
3.3v
ADC_SCK
A ADC_CS | cHO
SOMHz | AG20 — | MCP3002
AG21—APCSDLY 10-bit ADC
ADC_SDO I__— _
AJ21 = CH1 — ”From sound source

v4.2 - PYK Cheung, 7 Nov 2017 Part3- 1

Department of EEE

Imperial College London

2.0 Experiment 10: Interface with the MCP4911 Digital-to-Analogue Converter

Step 1: Understanding Datasheet - Go to the Experiment website and download the

datasheet for the MCP4911 DAC and the file spi2dac.v, which is a Verilog module that
implements the SPI interface circuit to communicate with the DAC. Make sure that you

understand from reading the datasheet:

e the purpose of each pin on the DAC (Section 3.0, page 17 of datasheet);
e how information is sent to the DAC through the serial data input (SDI) pin (Section

5.0, page 23-24);
e how to configure the DAC’s internal function (page 25);

e DAC's timing specifications and timing diagram (pages 4 and 7).

There is no need for you to know how exactly the DAC works internally. However, you need
to have sufficient appreciation of the serial interface in order to conduct this part of the
experiment. Furthermore, don’t worry if you don’t fully understand the Verilog code in

spi2dac.v. This will be explained in a Lecture.

Step 2: Timing diagram — The spi2dac module takes a 10-bit

number in parallel (controlled through the load signal which data_in[9:0]

must be high for at least 20ns) and generates the necessary
serial signals to drive the MCP4911 DAC. Based on the
information from the Datasheet, draw in your logbook the
expected timing diagram of the SPI interface signals when a
word 10’h23b is sent to the DAC.

Step 3: Verify timing of spi2dac.v using Modelsim — The steps are:

Create a project ex10 and a top-level module ex10_top.v

Make this file top-level module (for now)
Click: ... > Process > Start > Analyze and Synthesise

Noubkwne

Step 4: Testing the DAC on DE1

load —

Start Modelsim (Tools > Run Simulation Tools > RTL Simulation)
Design a do-file as a testbench to exercise the input signals correctly
Run the do-file and match the waveform generated with your prediction

spi2dac

4 DA

Copy to the directory ex10 the file spi2dac.v downloaded from the webpage

In order to test the spi2dac.v module and verify that DAC works properly, create the top-
level design ex10_top.v that implements the circuit shown in the following diagram.

add-on board

Cyclone V FPGA DAC_CS (TP2 green) R
SW[9:0] J data i !
» gatd_In DAC_SDI (TP1 red)
clktick_16 5,11, spi2dac | pAC_LD (TP4 white)
»> +5000 » load >
DAC_SCK (TP3 yellow)
50MHz > clk >

MCP4911 analogue out

— Right channel

DAC (TP8 red)

The data_in value determined by the 10 switches (SW[9:0]) is loaded to the spi2dac module
The steps for this part

at a rate of 10k samples per second as governed by the load signal.
are:

v4.2 - PYK Cheung, 7 Nov 2017

Part3- 2

Department of EEE
Imperial College London

1. Download from the experiment website the file spi2dac.v.

2. Check that the clktick_16.v module that you used last week is in the “mylib” folder.

3. Create a top-level module ex10_top.v to connect all modules together as shown in
the diagram.

4. Click: Project > Add/Remove Files in Project ..., and select all the relevant files used
here. This step is important — it allows you to select which modules to include in
your design.

5. When ex1__top.v is the current file, click: Project > Set as Top-Level Entity. This is
another useful step, which defines the top module, and all those module below this
one, for compilation. With steps 4 and 5, you can move up or down the design
hierarchy in a project for compilation.

6. Edit the ex10_top.gsf file to include pin_assignment.txt.

7. Compile and correct errors as necessary.

Once the design is compiled without error, download the bit-stream file to the DE1 board.
Using the DVM feature of the scope, measure the DAC output voltage at TP9 for SW[9:0] =0
and 10’h3ff. (The voltage range of the DAC output should be from 0V to 3.3V.)

Step 5: Verify the signals on an oscilloscope

Confirm that the signals produced by the FPGA with the spi2dac.v module agree with those
from Modelsim. Set SW[9:0] to 10’h23b and measure DAC_SCK (TP3) and DAC_SDI (TP1)
using an oscilloscope. You may need to trigger the scope externally with the DAC_CS signal
(TP2). Compare the waveforms to those predicted by Modelsim.

3.0 Experiment 11: D-to-A conversion using pulse-width modulation

Instead of using a DAC chip (and SPI serial interface to communicate with the chip), an
alternative method to produce an analogue output from a digital number is to use pulse-
width modulation (PWM). The Verilog code for a pwm.v module is given to you in Lecture 9
slide 15.

Create a design ex11_top.v according to the circuit shown below. Use the scope to examine
the signals at TP5 and TP8. Compare the output voltage ranges at TP8 and TP9.

add-on board

Cyclone V FPGA DAC_CS (TP2 green) - P8
SW[3:0] data_in i
LU DAC_SDI (TP1 red)
. . ' » MCP4911 analogue out
clktick 16 _ 117 spi2dac | DAC_LD (TP4 white) DAC Right channel
> = load > (TP8 red)
I— 5000 DAC_SCK (TP3 yellow)
50MHz > clk >
- PS5 TP9
— data_in,
load QWD lowpass mﬁg
p olk pwm..out m (TPS green)
v4.2 - PYK Cheung, 7 Nov 2017 Part3- 3

Department of EEE
Imperial College London
4.0 Experiment 12: Designing and testing a sinewave table in ROM

This part of the experiment leads you through the design of a 1K x 10 bit ROM, which stores
a table of sine values suitable to drive our DAC. The relationship between the content of the
ROM D[9:0] and its address A[9:0] is:

D[9:0] = int(511*sin(A[9:0]*2*pi/1024)+512) for 1023 > A[9:0] 2 0

Since the DAC accepts an input range of 0 to 1023, we must add an offset of 512 in this
equation. (This number representation is know as off-set binary code.)

Before generating the ROM in Quartus using the “Memory

Compiler” tool, we need to first create a text file specifying Al:0] D[9:0] ,)/l/l
the contents of the ROM. This can be done in different ways. - | 1;8‘M10 — |4/ |2
Included on the Experiment webpage are: 1) a Python script SOMHZ :

—
to do this; 2) a Matlab script to do the same thing; 3) a memory initialization file ”‘°d“;:d‘:g‘:‘s(
rom_data.mif created by either method. Download these files and examine clock, '
them. a);

input [9:0] address;

Click Tools > IP Catalog to bring up a tool which helps to create a 1-Port ROM. A input clock;
catalog window will pop up. Select from the window >Library >Basic Functions > output [9:01 q;

Onchip Memory > ROM 1-Port. Complete the on-screen form to create ROM.v.

To verify the ROM, create the design ex12_top.v, that uses the switches SW[9:0] to specify
the address to the ROM, and display the contents stored at the specified location on the
four 7-segment display. Once this is done and loaded onto the DE1, verify that the contents
stored in the ROM matches those specified in the rom_data.mif file.

5.0 Experiment 13: A fixed frequency sinewave generator

Let us now replace the slide switches with a 10-bit binary counter and connect the ROM
data output to spi2dac and pwm modules as shown in the figure below. Since the ROM
contains one cycle of sinewave and the address to the ROM is incremented every cycle of
the 10kHz clock, a perfect sinewave is produced at the left and right outputs of the 3.5mm
jack socket.

Address A[9:0] D[9:0
counter A 1Kx10 p [5:0) data_in
(10-bit) ROM SPl interface
spi2dac > toDAC
en p clk load
— clk
50MHz 5000 10kHz sampling pulse —
> clk pwm_out
pwm to LP filter
data_in

Implement this circuit and verify that the signals produced by both the DAC and the PWM
are as expected. What is the frequency of the sinewave?

v4.2 - PYK Cheung, 7 Nov 2017 Part3- 4

Department of EEE
Imperial College London

6.0 Experiment 14 (optional challenge): A variable sinewave generator

Combine everything together to produce a design ex14_top.v, which produces a variable
frequency sinewave using table-lookup method. The sampling frequency is 10kHz, and the
sine value is read from the ROM that is preloaded with one-cycle of a sinewave (i.e. the
address of the ROM is the phase and the content is the sine value). On every sample period,
advance the address (i.e. the phase) by an amount determined by SW[9:0]. Derive the
relationship between the output signal frequency and the switch setting.

The overall block diagram is shown below. The switch setting is multiplied by a constant k to
convert the phase increment SW[9:0] to frequency.

You can produce a 10-bit x 14-bit constant coefficient multiplier using the IP catalog tool.
The 14-bit constant is 14’h2710 (which is 14°’d10000). The product is a 24-bit number, and
the frequency is the top 14-bits (Why?). The frequency can then be displayed on the 7-
segment displays.

Produce a 439Hz sinewave, which is close to 440Hz, the frequency commonly found in
tuning forks. Make sure that this is indeed correct (through listening or measuring with a
frequency counter).

50MHz |

o 0
S O
Multiply by a 2 7-segment 5/6 [1
constant k £ decoders al |2
3
A[9:0] D[9:0]
D Q 1Kx 10 [data_in
ROM SPl interface
Addr . spi2dac > toDAC
Reg 2 load
— clk
b
load
> clk pwm_out
: =5K 10kHz pwm to LP filter
7 ' data_in

7. Experiment 15 (Optional Challenge): Using the A-to-D converter

In this experiment, you will learn to use A-to-D converter MCP3002 on the add-on board to
convert analogue voltages to digital signals. Again, download from the webpage the
spi2adc.v module, which is already written for you to use.

Instead of using the slide switches to control the frequency, use the A-to-D converter to
convert the dc voltage of the potentiometer (which is between Ov and 3.3v) and use this
converter value instead.

To help you know what you should aim for, the solutions for ex14sol.sof and ex15sol.sof are
available to download.

v4.2 - PYK Cheung, 7 Nov 2017 Part3- 5

Department of EEE
Imperial College London

Department of Electrical & Electronic Engineering

Imperial College London

2" Year Laboratory

Experiment: FPGA Design with Verilog (Part 4)

PART 4 - Real-time Audio Signal Processing ‘

1.0 Putting everything together

In this part of the experiment, you will learn to combine the ADC with the DAC on the Add-
on card, and use the DE1 to perform some simple audio processing.

The goal of the final week’s laboratory session is to implement a speech echo effect
synthesizer. You need to bring your earphone to the lab in order to listen to the audio
output.

2.0 Experiment 16: An audio in-and-out (all pass) loop

Download from the Experiment webpage the file ex16_proto.zip, which contains the
prototype folder for this experiment.

e Examine the contents within this folder. You should find the following Verilog files:

Module Function
ex16_top.v Top-level design; interface to pins
spi2dac.v SPl interface circuit to DAC from Part 3
spi2adc.v SPl interface circuit to ADC
pwm.v Pulse-width modulation DAC from Part 3
clktick_16.v Clock divider to generate sampling clock ticks at 10kHz from Part 2
pulse_gen.v Generate a one-cycle pulse on rising edge of a trigger signal (new)
hex_to_7seg.v | Hex to 7-segment decoder from Part 1
allpass.v “processor” module — this performs processing, which is passing input to
output for now.

e Study ex16_top.v. This specifies a system as shown in the spizadc SPI_ADC (

following diagram (the part inside the Cyclone V). Make sure .sysclk (CLOCK_50),
you understand how this works. .channel (1'b1),
. . - L. .start (tick_10k),
e Note how the spi2adc.v module is used. Explicitly associating e T
the signal names INSIDE the module to OUTSIDE allow .data_valid (data_valid),
connections to be defined independent of the order. This is .sdata_to_adc (ADC_SDI),

.adc_cs (ADC_CS),
.adc_sck (ADC_SCK),
modules. .sdata_from_adc (ADC_SDO));

a more verbose but is much safer way in making connects to

e The ADC has two analogue input channels: CHO and CH1. They connected to the
potentiometer and to the 3.5mm socket respectively. We always use CH1 for ex16.

e Now examine the module allpass.v. The name of this module is “processor” and is
different from the name of the Verilog file. There is no need to use the same name
except that normally it is more convenient to do so. However, in this case, we have
deliberately used the filename “allpass” to describe its function, while using a more
universal name for the module. You can choose “allpass.v” as the source of the
module “processor” now. Later, you can have a different Verilog file to define a

v4.1 - PYK Cheung, 7 Nov 2017 Part4- 1

50MHz

different “processor”.

specified in Project > Add/Remove File in Project.

Department of EEE
Imperial College London

Which version of “processor” you use in your design is

~3gs Ldld ﬂ}\ 1.65V vn,[\A‘l l
V.var 1 512 Kbartabadrd oo VWI !
(lowpass
Cycl. | filter
clione
FPGX'SOC pwm
data_out[9:0] > SpI
Id_pulse spi2d interface l L
= . MCP4911 —-{>—>_’:|]
P 10-bit DAC R
—_
processor
< data_in[9:0]
SPI
data_valid . MCP3002
—> N — spi2 interface 1obtADC | CHL
50MHz start | o
50MHz ~
10KHz =
» clktick
1.24V
Hex_to L0
— 7seg [m=—p> b/_ﬁ/)l

actually does very little. It:

Build your design for testing on the DE1 Board.

Make sure that you understand fully what the Verilog file “allpass.v” does.

)

—

!

It

but subtracting the offset from

1. Corrects the ADC converter data (which uses offset binary with 0V
represented by a value of ~385),
data_out[9:0] to obtain a 2’s complement value x[9:0].

2. Connects Xto, i.e. does nothing and hence “allpass”.

3.

offset now is at 512 as shown below.

To do this, you should:

1.

Open each .v file, and use Processing >
Analyze Current File on each of the
Verilog file to ensure that there is not
syntax error.

Use Project > Add/Remove File in Project
to include all the .v files you need. Here
we select allpass.v to supply the
“processor” module. In the future, you
could substitute allpass.v with another
file for a different processor.

While ex16_top.v is the current file in the
editor window, use Project > Set as Top-
level Entity to define top is the top-level

v4.1 - PYK Cheung, 7 Nov 2017

Processor — “allpass”

50MHz

Converts the Y value from 2’s complement to offset binary for the DAC. The

[processing !

offset correction

A

512

data_out[9:0]

> 2

y[9:0]

+

512

1

~385

!LS:O] ®: data_in[9:0]
E ‘KT-J data_valid
': 385

Part4- 2

Department of EEE
Imperial College London

module.

4, Use Project > Start > Analysis and Synthesize ... to check for errors and
warnings without compiling everything.

5. Check that Device, Pin and TimeQuest clock period are all assigned correctly.

6. Compile the whole design and download the bit-stream file “ex16_top.sof” to
DE1.

7. Test that it is working properly. You can use the PC to play some music or
speech files (downloadable from Experiment webpage), and use an earphone to
listen to the DAC output. When no signal is sent to the DE1 board, the display
should show a hex value of 181 to 188.

When you get to this part, the experiment framework is shown to be working. It takes audio
samples at 10kHz from the ADC, passes it through a processor module and output the
processed sample to the DAC.

Test yourself

Now create a new Verilog file mult4.v which is a processor module (i.e. module name is still
“processor”), that amplifies the input by a factor of four. Test that this is working (i.e. the
signal to the earphone should be louder or distorted).

3.0 Experiment 17: Echo Synthesizer with fixed delay

In this part of the experiment, you will design, implement and test a circuit that simulates
the effect of simple echo. The diagram below shows two components of a sound source
reaching its listener: the direct path signal x(t) and the echo signal B x(t-T) which is a weaker
version of x(t) attenuated by a factor B, bounced off the floor. The echo signal is also
delayed by T relative to the direct-path signal x(t).

Sound y(t) = x(t) + B x(t-T)

source x(t’)
1 et LU s @
OBL ~~iagmanilii -

Echo path

Echo signal
B x(t-T)

—

Such simple echo can be implemented as signal flow graph as shown below. This involves
three components: a delay block that delays x(t) by K sample periods; a gain block which
multiplies the delayed signal by the factor B; and the adder.

Sound > + Output with echo
source x(t) y(t)

Delay by K samples

>

7K

The delay block can be implemented with a first-in-first-out (FIFO) buffer. A k- qatare. 0]
FIFO is found in all forms of digital systems. The rule is simple: receiving data | |, ..
are stored in sequence in such a way that they can be retrieved in the order | rdreq
that they arrive. When a new data item arrives and the FIFO is not full, it is |k {cock

q[9..0]
full

written to the FIFO. As a stored data item is retrieved, it is removed from the
FIFO. This allows the send and retrieve rates to be different in the short term.

v4.1 - PYK Cheung, 7 Nov 2017 Part4- 3

Department of EEE
Imperial College London

If the send rate is higher than retrieve rate, eventually the buffer will get full. If the buffer is
full, it should not receive any more data (otherwise existing store data would be corrupted).
A “full” status signal is asserted to tell the sender not send any more data. Similarly if the
buffer is empty, it cannot provide any data for retrieval. An “empty” status signal is used to
indicate that the FIFO has no more data to provide.

Create a new project using the files from Experiment 16 as your prototype. With IP Catalog
tool, generate a FIFO component of size 8192 x 10-bit as shown here. You only need to
provide only the “full” status signal. This FIFO is used to store the most recent 8192 samples,
hence providing a delay of 0.8192msec since the sampling frequency is 10KHz. Before the

echo simulation circuit starts to provide the echo, the FIFO must first be completely filled (i.e.

wait until the “full” signal is asserted). Thereafter, the writing of the ADC sample and DAC
sample is synchronous, and the FIFO remains full. The read data is always the write data
delayed by 8192 sample period.

The attenuation factor 3 should be % or %, which can easily be implemented with a simply
binary shift.

Deliverable

Implement the simple echo simulator and test that it works. For the purpose of test,
download three different sound files: clapping.mp3, hello.mp3 and hitchhiker.mp3, and play
them on the PC or phone in a loop. Use your earphone to listen to the effect of the echo
synthesizer.

4.0 Experiment 18: Multiple echoes

The design in Experiment 17 produces a single echo. The signal flow graph only has
feedforward paths. Multiple echoes can be produce with a slight modification of the signal
flow graph to the one shown below.

Sound o + » Output with echo
source x(t) A y(t)

Delay by K samples .

Z—K
The delay block now stores the
output sample y(t) instead of the Processor — multiple echoes
input sample x(t). The attenuated Echo synthesizer (feedback) : offset correction
and delayed y(t) is SUBTRACTED from E data_out[9:0]
X(t) to produce the next output. (Why . +:© >
must this be a subtract and not an i vi9:0l
add?) i *
- E 512
Provide a design to implement this rdreq iX[QZO] @:+ Zote-inls:o]
architecture and test it. 81F9|§élo MR \T/
—|q[2:0] ! 385
—> wrreq |
50MHz |—E- pulse_gen [« data_valid
i

v4.1 - PYK Cheung, 7 Nov 2017 Part4- 4

Department of EEE
Imperial College London

5.0 Experiment 19 (Optional challenge): Echo Synthesizer with Variable delay

In this experiment, you will design, implement and test a system with variable delay. A bit-
stream (echo.sof) that implements a solution can be downloaded from the Experiment
webpage. You also need to download the three MP3 test files. Connect the audio input to
the speaker of the PC and play the audio files in a loop. Program DE1 with echo.sof and
listen to the output with your earphone. Change the delay of the echo with SW[8:0]. The
amount of delay in millisecond is displayed on the 7-segment displays as a decimal number.

The design of this experiment is shown in the block diagram below. It consists of a number
of modules:

RAM Delay Bock - In place of the FIFO to implement the delay block, it uses a 2-port
RAM block (8192 x 9-bit) — one write port (to store the ADC samples) and one read port.
Address Generator - A 13-bit counter is used to generate the read address to the RAM.
(Why 13-bits?) The counter value is incremented on the negative edge of the data_valid
signal at a frequency of 10KHz. In this way, the address generator computes the
address used on the next read and write cycle. The write address is generated from the
read address by adding the value taken from SW[8:0]. Since the address is 13-bits wide,
the 9-bit delay value is zero-padded in its lower 4 bits. Therefore, the delay between
the read and write samples is: SW[8:0] x 16 x 0.1 msec.

The read and write enable signals are common, and it is generated from the data_valid
signal with the pulse_gen module.

The write data value y[9:1] is 9-bit instead of 10-bit wide. This is because the
embedded memory in the Cyclone Il FPGA is configurable as 9-bit in data width, but
not 10-bit. Therefore the output data value is truncated to 9-bit before storing in the
delay block.

The read data value is of course also 9-bit wide. Therefore the x0.5 can easily be
implemented by sign-extending the 9-bit value to 10-bit: {q[8],9[8:0]}.

The implementation of the feedback loop to generate the echo effect is identical to that
from the previous experiment.

To display the delay value in milliseconds, the value of SW[8:0] is first multiplied by
1638 (why) with a constant multiplier. This gives a 20-bit product, the most significant
10-bits of which is the delay in milliseconds. (Why?) This is then converted from binary
to BCD and decoded for display on the 7-segment displays.

v4.1 - PYK Cheung, 7 Nov 2017 Part4- 5

Department of EEE
Imperial College London

Processor — variable delay echoes

Echo synthesizer (feedback) offset correction

_ data_out[9:0]
2
50MHz =
—>
q[8:0] gy t4
G <
8192x9

|—> rden wren x[9:0] 1 mj' data_in[9:0]

enable
+
@ > ‘: pulse_gen

Ny 50MHz

| data_valid

—>| 13-bit < <

50MHz CTR SWI8:0 Delay[19:10] mex o Ll o[©
bin2bcd - ¥ | ol 1
1 _7Tseg 4l |2
1
@ {SW[8:01,0,0,0,0}

6.0 Experiment 20: Voice Corruptor (Not part of this Lab)

T
1
1
1
1
1
1
1
1
1
1
|
rdaddr(12:00 | 2-port RAM wdaddr[12:0] |
» —— !
1
1
1
1
1
1
1
T
1
1
1
1
1
1

This part of the experiment is outside the scope of the experiment. It is designed to provide
you with an open problem so that you can explore designing digital systems and
implementing digital circuits using the DE1 and the add-on card at your own leisure. You
need to check out a set of kits to take home from stores. For example, you might want to
try this out over the Christmas break.

You are now equipped with all the tools and knowledge to design a reasonably complex
audio processing system. The idea here is to design something that will take a human
speech signal and then “corrupt” in a way that the identity of the speaker is masked while
the speech remain intelligible.

One way to do this is to change the pitch of the speaker (e.g. make it sounds like Donald
Duck). There are many ways to perform pitch change of speech. One method, which is
linked to the previous experiments, is to employ a technique based on cross fading (i.e.
combining) of two separately delayed version of the speech signal. The technique is
depicted in the block diagram below.

Delay by KA samples
7-KA —> Gy
Sound Output with
source x(t) pitch changed
Delay by KB samples a y(t)
Z-KB B

The sound source is delayed through two separate blocks, providing KA and KB sample
delays, which vary with time. The delayed signals are then attenuated by GA and GB, and
combined with the adder. In order to minimize the artifacts and discontinuities in the
output signal and to maintain a constant volume, the gain values GA and GB are designed to
cross fade with each other —i.e. when one is ramping up (from 0 to 1), the other is ramping
down. A plot of the four parameters, KA, KB, GA and GB, vs time is shown below.

v4.1 - PYK Cheung, 7 Nov 2017 Part4- 6

Department of EEE
Imperial College London

Delay (ms)

393

KA 25.5 Gl "
12.7 H » care

0

Delay (ms)

39.3f- : ~G

KB 25.5| ' Don't e " Don’t
127 . care care

o N

1
GA

NN

t0 tl 2 t3 t4 t5

“—> —>
R I Y

There are four regions.

1. Region A (t1 to t2) - Only channel A is contributing to the output. The delay KA
is gradually decreasing linearly from 25.5ms to 12.7ms (255 to 127 x 100us).
The gain GA is constant at 1.

2. Region AB (t2 to t3) — Both channels contribute to the output with A decreasing
and B increasing their respective contributions. The two channels are cross
faded before GA drops from 1 to 0 while GB increases in the other direction.

3. Region B (t3 to t4) — This is similar to Region A, but the behavior applies to
channel B instead of channel A.
4, Regions BA (t4 to t5) — Similar to Region AB, but the two channels are reversed.

The pattern repeats itself indefinitely. Note that the “don’t care” portion of KA and KB is
due to the fact that during this period, the gain GA or GB is zero.

Hints:

e Initially, try the delay ramping gradient of 0.5, i.e. the delay is dropped by k over
time 2*k.

e You can use a 9-bit down counter to define both the delay KA and the four regions.

e You can derive all other values: KB, GA and GB, from the counter values.

e You can design a four state synchronous state machine to control the corruptor
circuit.

e Instead of delay varying ramping high to 0, you can reverse the direction of the
ramping. Alternative you can design the delay to vary up and then down.

e In addition to pitch changes, you may explore other audio effects.

v4.1 - PYK Cheung, 7 Nov 2017 Part4- 7

Experiment VERI 2017-18 Student Pairing

MONDAY (Peter)

TUESDAY (Ed)

Ax03-01

Elia,S. (Styliana)

Hu,J. (Jingming)

Bx03-01

Gaitonde,A.A. (Anuja)

Lam,Y.K. (Yau)

Ax03-02

Barelkowska,M. (Maria)

Menon,P. (Prithvi)

Bx03-02

Spillett,0.B. (Oliver)

Umeigbo,K.K. (Kosidinna)

Ax03-03

Thirumalaikumar,S.N.

Grivas,D. (Dimitrios-Filippos)

Bx03-03

Brega Monteiro,P. (Pedro)

Barmpas,K. (Konstantinos)

Ax03-04

Graham,D. (Dayan)

Varga,D.K. (Daniel)

Bx03-04

Jennings,J.L. (Joshua)

Andriopoulou,L. (Lydia)

Ax03-05

Hanassab,S. (Simon)

Zhelyabovskiy,S. (Sergey)

Bx03-05

Venkat,V. (Vaikkun)

Tarasova,K. (Kateryna)

Ax03-06

Reza,R.L. (Rayid)

Yu,K.K. (Kevin)

Bx03-06

Woodward,N.R. (Niall)

Sun,K. (Kaiyue)

Ax03-07

Wan,C.S. (Chak)

Yeow,E.K.J. (En)

Bx03-07]

Gaunt,W.J. (Wesley)

Wang,Y. (Yuwei)

Ax03-08

Benarroch,E. (Ethan)

Si,Z.W. (zhi)

Bx03-08

Manjunatha,R. (Rishabh)

Feng,X. (Xueyue)

Ax03-09

Vukmirovic,S. (Stevan)

Low,Y.H. (Yee)

Bx03-09

Sharma,A. (Archit)

Zhou, X. (Xin)

Ax03-10

Brito Rodriguez,G. (Gustavo)

Xu,X. (Xinyuan)

Bx03-10

Prescott,A.T. (Alexander)

Moniatis,D. (Dimitris)

Ax03-11

Vicente Correia,F.

Liang,L. (Libang)

Bx03-11

Malik,M.A. (Muhammad)

Wang,L. (Wilson)

Ax03-12

Zhu,N. (Ninghui)

Shen,Z. (Zhenyi)

1x03-01

van der Schoot,W. (Willem)

*** NO PARTNER ***

Ax03-13

Hallam,R.C. (Rebecca)

Edun,M. (Mobolurin)

1x03-02

Surana,M. (Mayank)

Sarjanovic,M. (Mateo)

Ax03-14

Baba,Y. (Yasmin)

Siddiqui,S.M. (Saad)

1x03-03

Pickup,E.D.A. (Edward)

Pietreanu,A. (Andrei)

Ax03-15

Stables,E.P. (Edward)

Yadav,A. (Anirudh)

1x03-04

Mulville,E. (Enda)

Vijayaraghavan,S. (Suparnan)

Ax03-16

Jarisch,A.R. (Alexander)

Krishnamra,S. (Subhakrish)

1x03-05

Tang,T.H. (Tze)

Chia,P.J. (Patrick John)

Ax03-17

Lam,K. (Kevin)

Muhammad Naim,N.A.B.

1x03-06

Ankers,H.A. (Harrison)

Balasubramanian,A.

Ax03-18

Scholz,C.F. (Constantin)

Elmani,T. (Tamara)

1x03-07

Kalanathan,P. (Prasana)

Al-Aggad,Z. (Zed)

Ax03-19

Ushchapovskyy,D. (Dmytro)

Fang,Y. (Yin)

1x03-08

Mayoh,T.J. (Timothy)

Xu,J.D. (Jiang)

Ax03-20

Pisigan,C.A.R. (Carlo)

Huang,Z. (Zengrui)

1x03-09

Verma,T. (Tanay)

Fu,Z. (Zhendong)

Ax03-21

Perumalla,A. (Arjun)

Huang,G. (Guilin)

1x03-10

Rallis,V.G. (Vasilios)

Chan,C. (Calvin)

THURSDAY (Mike)

FRIDAY (Ed)

Ay03-01|Hu,F. (Fangfang) Gasim,G. (Gasim) By03-01 Yusuf,A. (Ayub) Zhang,H. (Haojun)
Ay03-02 | Biet,C.M.A. (Clementine) *** NO PARTNER *** §By03-04Pollard,]).D. (James) Guan,G. (Guowei)
Ay03-03 | Alix-Brown, L.F. (Loic) Udvardi,P. (Peter) By03-03 Poskitt,T.). (Thomas) Bialas,T.J. (Tomasz)
Ay03-04|Berry,R. (Rahul) Gee,M. (Mark) By03-04 Biggs,B. (Benjamin) D'Olne,E. (Emilie)
Ay03-05 | Paul,P. (Pranav) Dimoska,S. (Sofija) By03-09 Wong,J.M. (Jonathan) Ng,Y.S. (Yi)

Ay03-06 | Gardner,J.O. (Joseph) Chakravorty,A. (Alorika) |By03-04 Tangri,R.K. (Rohan) Varfolomeev,V. (Vadim)
Ay03-07 | Muttawa,O. (Omar) Kong,P.J.R. (Pil) By03-04 Thompson,J. (Jamie-Lee) |Chan,S.C.S. (Siu)
Ay03-08 | Pong,Z.K. (Zhi) Ooi,L.J. (Li) By03-04 Nevett - Farman,B.l. Chan,J.R.Z. (Joshua)
Ay03-09 | Frieling,]). (Jonas) Wong,L.J. (Liang) By03-09van Oordt,B. (Bonne) Iriawan,H. (Harvin)
Ay03-10|Terranova,G. (Giuseppe) |Song,Y. (Yi) By03-1d Soechit,A. (Adhir) Jang,S.H. (Sung)
Ay03-11|Raich Condeminas,). (Javier) | Deng,H. (Husheng) By03-11 Garcia Matachana,A. Zhang,Y. (Yaohua)
Ay03-12 |Lau,F.Y.G. (Fai) Zou,Y. (Yiwen) ly03-01| Hossain,M. (Mehedi) *** NO PARTNER ***
Ay03-13 |Ramage,G. (Georgina) Li,Z. (Zheyuan) ly03-02| Lawrence,M.K. (Michael) Laguarta Soler,J. (Jordi)
Ay03-14|Grand,G. (Georgia) Xia,Z. (Zixiong) ly03-03|Stratton,S. (Samuel) Serena,A. (Alessandro)
Ay03-15 |Ainscough,G.E. (George) |Sy,C.K.D. (Chun) ly03-04| Ajose,B.D. (Babalola) Nowaczyk,L.K. (Leszek)
Ay03-16 | Waller,J. (Jack) Zhang,C. (Che) ly03-05|Scaife,E.J.C. (Edward) Mashini,S. (Suleiman)
Ay03-17|Kidd,G. (George) Sheth,l.M. (lvaxi) ly03-06| Srinivasan,P. (Padmanaba) [loannides,G. (Georgios)
Ay03-18 | Mansoor,R.S. (Ryan) Liu,S. (Shiwei) ly03-07| Ravichandran,K. Lua,Y.H. (Ying Hao)
Ay03-19 | Wiederkehr,L. (Leon) Hu,J.M. (Jin) ly03-08| Treon,A.R. (Armaan) Zhang,R. (Ruoyu)
Ay03-20|Yu,R. (Rymon) Tan,Y. (Yuzhuo) ly03-09| Rovick Arrojo,D.E. (David) |Chen,Y. (Yuxuan)

Ay03-21

Ofluoglu,E. (Efe)

Luo,Z. (Zhenyu)

ly03-10

Sanchez,V.A. (Victor)

Wu,T.H. (Tim)

| ; "D'Bueny | Tz-€0xv
= z 07T -0V 11 (unng) ‘9
nRusuz) Zom [1zcomv][10 3nL]00CT -0v T (uined) UNSS o1 mo”_ No-”__mﬂ NO.NH.O#.: [unfiy) "vejewniag | Tz-c00v
193] 00T - Ov'TT {wi) ‘H1Inm[ot-€0Al|[T0 nHL[00T -Ov'TT AME .h:_w%_s Tz-e0hv|[S0 3aniforTT-0zTT EosEN .w.>m___& ow.mmx" Mw;_os_ Or'TT-0CTT (inJ3u3z) Z'3uenH | 0Z-E0XY
10 144 - —— i Or'TT-0C'TT — - : (8uopuayz) 'z'ni| 60- ¥y ouesisid| oz-goxv
— - - uenxnj) "A‘uayd | 60-€0A1[SO NHL "A'uel| oz-oAv|[+0 3nL|ov'TT-0ZTT = 0vTL-0C 1L (o12ed) "Y'y uesisid
SO ™4[OV’ TT-0T'TT (i ALl 0V 1T -0z 1T (onyzny) "A‘uey _ - (Aeuey) "1 ‘ewsap| 60-g0x1| | ¥O" NOW — TTEORY
“malovTI-or nhony) yBueuz| 8o-€ol] v0 NH "WnA| 0z-€0Av|| €0 3nL|ovTT- 0z —NoW| oV TT -0z TT UA) ABued| 6
0 144[0p'TT-0TTT (= E =AALl 0P TT -0z 1T (uowAy) y'nA| 0z = - z (8ueir) ‘a'r'nx| 8o-eoxi| [0 now]o g Rhpsrodetpysn | 61-60%Y
= s OeH BUIA) 'H'A'®NT| L0-€0AI|[€0 NHL ‘WrnH| et-c0Av]| zo anLlovTT-0Z'TT : 0 NOW|OvTT -0z TT| (0mAwq) ‘qAhysaodeyay
€0 4] 0v'TT - 0ZTT A A NHL| Ov'TT - 0T'TT (un) "WnH = 5 (Aysowy) r1'yohen| go-goxi| [T Tuew3| 8T-e0%V
- - = 81099) '9‘sapiuueo|| 90-€0AI|| z0 N = 6T-€0Av|| TO 3INL|OF'TT-0Z'TT : “NOW | 0v T - 0211 (esewe]) "] ‘luew
20 144/ 0P'TT-0T'TT (sl i = TI-0211 (uoa1) 71yaxIapaIm = - a7) ‘Z'pebby-1v| zo-coxi| | 10 =y “E0XV
< = 0 NHL[OF'TT-0TT T1-00TT (paz) Z'p _ — (UnueISUo)) 47Zj0yds | 8T-€0
= T1-0C (uewidins) 'S1uiyseiN| So-€oh| T = - - 1ys) ‘s [st-eohv|[so 3nL|oz — . S0 NOW|0Z'TT-00TT !
10 144 o H NM.M (ozsa1) W1 4AzoBMON| v0-€0A|[SO NHL| 0Z'TT - 00°TT o w:MUMH_WWmNms_ s 5onior oot (eueseiq) g'ueyieueiey| Lo 8”" o Now | 02T 00 T [N G v aien pewweinn | Zi-gony
SO 1¥4] 0T'TT - A NHL|0Z'TT-00TT X)) S - - "TT | (43eemsy) "y'uelueweiqnseleg| 90-€0 (unay) y'weq| L1-goxv
_ — uessa|y) “y‘euasss| €0-c0Al|| 0 NH TS 7T-c0hY €0 anL|ozTT-00TT|(Y : €0 NOW|0ZTT-00TT !
v0 144 0Z'TT-00'TT (osp 7 " NHL|0ZTT-00TT (Ixenr) “WI'yaays = - (uosiueH) 'y H'ssuy| 90-c0xi eYqNS) S BIWBUYSLY | 9T-E0XV
— — of) ‘r43]0s eyendeq| zo-coAi|| €0 5o 2ie0mvl| 20 anLl 0z TT-00°TT ! Z0-NOW 0z 1T - 00Tt (ysyeyans 1
€0 44| 0T°TT-00°TT (1p1 - “NHL|0ZTT -00°TT (281099) "9'ppiy _ - (uyor>pried) rdeyd| so-coxi - UEXa|y) "Y'V yosuer| 9T-e0xv
[0z 1100 enyoeA) A'Bueyz| Ti-eoka)| 20 n 3Bueyz| 9T-€0kv|| 10 3NL| 0ZTT-00TT Hor : 10 NOW[0ZTT-00TT| _ (1opuexe] .
20 4|0z TT-00TT (- . T [(3yD) "2'Bueyz _ . - (921) ‘H'L'8ueL| S0-e0xI . [QpniIuY) 'vABPeA| ST-0XY
= T1-00° (8ung) "H's‘3uer| o1-€oAg 10 NH - ‘raaiem| ot-eohv|| so anL[ooTT-or 01 i . S0 NOW|0o'TT - ov'0T ypna a -
10 144] 07 TT NMMH (utnseH) “H‘uemen | 60-€0Ag ([SO NHL| 00°'TT - OF°0T Ac_umd M_v_._w\»“ oI 30 3InLl00TT-0p 0t (ueusedng) ‘s‘ueneySesehefin [0-g0x] T (p1emp3) "d°3's3|qeas| st-coxv
S0 144[00°TT - : = “T1- 00T unyd) ‘a ; = - (epu3) 39pAINAI| ¥O-€0XI = - ees) ‘'S inbippis| v1-goxv
- ‘Z°y'r'ueyd|80-€0hg|[0 NHL[00°TT - - TT-0v 0T p T1-0v01 (pees) "' inbippt
o a0 TI=0008 A%ﬁo:.wm b%“w Lo-eokaf| €0 NHL|00'TT-Ov'0T| (584099) I'9°yBnodsuly | sT-0v)| €0 3nL ON.H.S.QH (121puy) "v'nueanaid| €0-€0xI mo-zmx NW.MH.%Q (ulwsep) "A'eqeg | yT-€0xv
€0 13| 00'TT - OV 0T (nis) '$9's = TT-0v 0T (Buoz) ‘Z'eix| vi-eokvf] 20 3N1)0 .) va3dnpid| eoeon| | 0N . . 1INjOGOIN) ‘IN'UNp3 | ET-€0XV
93] 00T - 07" (tu1pen) ‘A'N93I0|0LBA|90-E0A]] 20 NHL 00T - OF "5'pueio| vT-€0AV|| 10 INL|00TT- 0¥ 0T (p2emp3) v i T0 NOW|00'TT - 0701 (unnjoq
0 1¥4[00°TT - 00T i i | e (e181099) "9'puei —=niloror o700 (0318IN) NDINOUETIES | 20-€0X] ST T T (e29909Y) D"4'We|[eH| ET-£0%V
10 1] 00'TE - 0¥ 01 - 3ul0,a| vo-€0ka|[S0 nHL[ovoT -0z 0T e e e 0T-020T Duefew) Wreueins] 2060 | o (1huauz) Zuays| T 0V
50 tud] ov'ot - 0T 01 (Aw___Em_vv whmm__om__m €0-€0A9|[¥0 NHL[O¥'0T - 0Z'0T (eui81099) ‘o‘adewey | £T-€0AV SMSH MM.OH 0Z'0T| (ws3y|IMm) "M I00YdS Jap UBA| TO-E0XI MW|Z oWl ov 0T -0z 0t (InysuIN) "N‘nyz| zT-€0xvy
= T - 07 Zsewo]) : : % -€0Av|| €0 3N . : = =
#0 44| 0%°0T - 0Z'0T = 70T - 02 0T (uamip) "A‘noz| ¢t . - (uosjim) 1'8uem [TT-c0xa = OT-0z01 (8ueqn) -18uen | tT-€0XV
— ———— 1amono) 'o‘uen | zo-€0Ag|| €0 NHL| O — —SOA zo anL|ov ot -0z ot : _ 20 NOW|0v'0T - 0C ' -
£0 1441 Ov.Or " O0¢ 01 M,sam_.: "H8ueyz|to-€0Ag|[zo NHL|o¥0T -0z 0T (1e4) w>w neq| zt mm>“ I (pewweynin) v INYIBIN | TT-E0XG TO NOW/|0t'0T - 02°0T| (03siuely) 3e12110) 23uadip| TT-€0XY
20 144 0Y°0T - 0201 - = ‘0T - 02°0T (8uaysnH) ‘H'Buaq| T1-€ = 1wiq) "a‘sneluoin | ot-goxa | —— — (uenAuix) “x‘nx [ot-goxv
. "v'A'zayaues| ot-€0A1|[1o nHL| 00T - 02 = “0T-000T (suuwia) “g'snel S0 NOW|[0Z'0T - 00°0T
10 13} 0V 01 - Oc 0F :Bvu_a M_DLNMW__U_BM 60-€0AI[S0 NHL| 0Z'0T -00°0T| (421er) 'seurwapuo) yorey [T1-g0AY moWMH MMNM 0001 (4apuexa|y) L 'v‘103s3.d | 0T-€0X8 #0 NOW|0Z'0T - 00'0T| (oneisno) ‘o'zandupoy oug| o1-c0XV
— e 1neq) *3:q‘ol ! ‘A‘Suos| ot-coAv|[+0 3 B — = ‘H'A‘MmO7| 60-£0xY
S0 44| 0Z°0T - 00°0T (P - = S (1A) "A"Buos - urx) "x'noyz| 60-0xg | f—— o (934) "H'AMOT
S . NHL| 0Z°0T - 00°0T — — (ux on|0z0T-000T
0N (UEORRC0TT Emvm - mM%M“ ww MN>" MNIDE 0Z01-0001| (3ddasnio) ‘9'erouesidL| oT-e0kv)| €O 3NL ow NM NW.MH (1yo1y) "v'ewieys| 60-c0xg Mw|no§ 9201 -0001 (ueA3s) §1n0uIunInA | 60-£0XY
= T 99))) “)‘ueJpueypl T g 60-€0Av|| 20 3NL|0Z0T - - "MZ'S | 80-€0xv
€0 193] 0201 - 000T| (uaueyy A X 0Z'0T - 00°0T (8uen) 'r1'8uom _ - (enAsnx) "x‘8ua4| 80-€0x8 | —= W0z 0T -0001 (14z) " MzZ"1s
= - = ewped) ‘d‘ueseaiutis| 90-€0Al|| zo NHL T8unend| eo-coAvll To anLloz ot -000T T0 NO — 2uoa | 800Xy
20 194[0z'0T-00°0T (eqeu - s (seuor) ‘r‘Buljary 2 : EUSTH) W eUIEUnIUE | 806018 o= o (Uen3) ‘3 'yoonieuag
= T 1emp3) *3'r3'3)1eas| S0-0A1|[TO NHL 1100 80-c0Av|| S0 anLl 000T-0r'6 (4qeys! . SO N —3moar| o con
TO 44| 0Z°0T - 00°0T (P - T =nril 000T-0v6 (1) 'r1100 2 - - (19mnA) "A'Buem | zo-coxa 70 NOW| 0007 -0v6 (u3) ry3
— o Blojeqeg) ‘q'g'3solv| v0-€0AIf[S0 NH "¥Z'3uod| 8o-€0Av|| 0 anL| 0ooT-0v'6 : _) SOUBM | £0-E0XV
SO 44| 00°0T-0Y'6 A A|[50 NHL| 000T-0v'6 (I47) ¥ZBuod . (Ra1sam) rmIunes| 008 | o= o0 0T “ov e BeYd) s
= . . anwes) ‘s'uonens| eoeol|[v0 NHL = o-eoAv|[€0 anL| oooT-0v'6 2 oY) Y I'MA| 90-€0%%
0 144 00°0T-0¥'6 { . = 0T -ov" (11d) "¥'rd‘8uoy| = - . anAiey) Huns| 90-€0xa| [=—= 000T-0v'6 (uinoy
= 0T-0v6 (RepIN) rwsousimen | 20-€0M)] EO NHL| 00'0T -0’6 "0'eMennIN| Z0-€0kv|| <0 3nL| 000T-0v'6 (enArex) - €0 NOW] 00'0t ~ 07 (Pikey) Tu7ezoy| 90-c0%V
€0 1ud] 00'0T - 0v W -€0A1|[20 NHL| 00'0T-0v6 (ewo) 0 = Lo (IIBIN) §'N'PEMPOOM | 90-€0%8 | (5= T 0001 - 0v'6 !
20 14| 00'0T-0v'6 (=S IS IS = 00T-0v'6| (exoly) 'vAuoneneyd| so-eokv|[10 3NL| 00 o -ov'6 eukimey) YenosereL | S0E0 S0 NOW| ov'6-0z6| (AeBias) ‘sApisnoqeAjayz| so-goxv
T0 13| 0001 -0v 6| (03RaY] “VeuePEIEH EPIED ﬁ.monm H0|3Hw oov.m o7 ?Qmmo: ‘o'raaupies| go-coAv|| so anL| ove6-0z6 (UmHEA] A3BIUA| 50608 oo ore oz (uowis) ‘s’qesseueH | 50-e0xv
= — AIYPY) v Uya305 | 01-€0A8|| S0 N = o-cohv|| 0 anL| ove-0z6 : _ — (1°1ueq) Y a'esien | vo-coxy
S0 14| 0v'6-076 (X = 0v'6-026 (elyos) ‘s'eysowiq| . eipA1) “1'nojnodoupuy | 40-€0%8| e NOW | 0v'6-02°6 !
= T q) 'gIp1o0 uea|60-c0Ag|[vO NHL — -coiv]| €0 anL] ove6-0z6 (e1p b _ - - (uekeq) ‘q'weyel | vo-coxv
4| ov'6-076 (EoES = — AeUBld) “d'|ned | SO-£0: . r's8ujuuar| v0-£0%a 0r'6-02'6
Mwl_m 3| 0v'6-0C6| (Uweluag) |'g’uewlie] - nanaN | 80-c0Aa|| €0 NHL ovm ww.m Ac__ eN) ‘Weo| vo-corv|| zo anL| ove-o0z6 ?ES:&NS@L — Mwﬁww 07'6-0C6| (s0ddiji-soLnwiq) ‘q'Seas | £0-0xv
— = - | 0v'6 - = 6-07° (sounyueysuoy) - i =
= 6-0C [olef) FuOSAWoyL |L0-E0Aa][20 NHL 'k -€0Av|[T073nL[ov6-0T6 ! S '6-00'6| (9914S) "N'SUEWNDIEIeWNIYL| E0-E0XV
20 44| Ov'6-076 (331-31 = = 0v'6-026 (Inyey) “y‘Aussg| vo _ = 01pad) "d‘o1uo N e3a1g | €0-€0%8 | [go-Now | 0z'6-006 4
_ — ueyoy) yy‘u8uel [so-coha|[o NHL “dpreapn | €o-coAv|| so anL| oz6-006 (oap : - — (IAUa1d) "d"UousN | 2o-g0xV
TO 144 0O¥'6-07°6 (- = ~AHLl 026-006 (1219d) "d‘1pieapn _ - - (euurpisoy) “¥3‘oqdiswn| zo-coxa| [0 Now| 0z'6-006 :
— R eyeuor) “IN'r'8uom [So-€ohg (| S0 N T 5 €0-€0AV|| 0 3INL| 0T6-006 ad - — Y (euey) "IN‘e)smoyaleg | zo-coxy
SO 44| 0T'6-00'6 £ = 076-006 (2107) *47‘umoug-xijy - (+2n110) "g'0"BaIIds [zo-coxa| ['eo-NOoW| 0z'6-006 : -
= - : uiweluag) 'g‘s381g [vo-coAg|[v0 NHL AT -€0AV|| €0 3NL| 0T6-00'6 J : = — (BurwBuir) “r'nH | To-€0%V
0 14| 0Z'6-00'6 T = 26-006[(sunuswsp) v'INDIR1g]| 20 - (neA) ¥ A‘wet| to-coxa| [zo-Nnow| o0z'6-006
_ - - ‘rLnpisod [€o-eohg|[€0 nHL] O - =SOR 0 anL| oz6-006 = - - (euenag) 's‘ena| to-goxv
6-006 (sewouy.) 'rL _ — Se0) DWises | T0-€0hv|| ¢ — = 026-006 !
mou_E o - (sawer) ‘g'r'piejiod [zo-c0ha|[zo NHL| 0z'6-00%6 (wiseo) ‘9 _ o 10 3NL| 0z6-006 (enuy) 'v'y‘spuolies | 10-€0x8 | [To"NOW SWeN s,3uapnis dnoig
20 | 026-00'6 Av) vnsna|To-€oka|[T NHL| 0z26-006 (8ueyued) 4nH| T0-€0AV e SWEN 53UpMIS dnoup | [Jossassy | awiL .
10 1) oco 006 AMH.MW -~ dnoip |[Jossassy | ewiy SWeN s,3uapms dnoip || 10s5955¥ .
u .
Jossassy| awi) BWEN S,

LT0Z 12qwiadaQ ST Aepuiy

L10Z Jaqwiadaq pT Aepsanyy

LTOC 1oquadaq ¢T >m—umw:._.

JUBWISSASSY |BJO - |¥IA Judwiiadx]

LT0Z 13qwa23@ TT Aepuoiy

vin juadny sewoy]

vin 3190]4B) UByalS

vin UOYIH d3JEeN

vin 17 1yz8uir

vin J33und 981099

vin eyooue|A ysueAaig

vin SI3YUM uag

vin pagJeg us|ag

V19 uhordAzs gnyer

V19 ljoypjene] uehry

) ueyjeuewey yssapen

V19 ay38uiseAafip uojien

V19 NS X9V

V19 anx ep|iH

V19 sineq sawer

HEIS 5930049 N

3eis 101S p3

23@-ST | 29Q-vT | 92Q-2T | 92A-TT |92A-80 | 92A-£0 | 92A-S0O | 22A-¥0 | 22A-T0 [AON-0E | AON-8Z |AON-LZ |AON-¥C | AON-EZ |AON-TZ | NO — R

- o — - : = i [4 N-0Z | AON-LT | AON-9T [AON-PT | AON-ET 9|0y sweN
! ylL 1 UoN [2F anyL any UON ud anylL any UoN g anyl anL UoN
1UdWISSassy |ed0 v Med € Med Zved T Med LTOZ AON £ O'TA

3|npayds uoisiniadng geq
8T0Z-LT0Z IY3A Judwiadx3

